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ABSTRACT
Measurement-based quantum computing (MBQC) is a promising
quantum computing paradigm that carries out computation through
one-way measurements on entangled photon qubits. Practical pho-
tonic hardware first generates a 2D mesh of resource states with
each being a small number of entangled photon qubits and then
exploits fusion operations to connect resource states to scale up the
computation. Given that the fusion operation is highly error-prone,
it is important to reduce the number of fusions for an MBQC circuit.

In this paper, we propose FCM, a fusion-aware scheme that
exploits wire cutting to improve the fidelity of MBQC. By cutting a
large MBQC circuit into several smaller subcircuits, FCM effectively
reduces the number of fusions in each subcircuit and thus improves
the computation fidelity. Given circuit cutting requires classical
post-processing to combine the results of subcircuits, FCM strives to
achieve the best cutting strategy under different settings. Evaluation
of representative benchmarks demonstrates that, when cutting a
large circuit to two subcircuits, FCM reduces the maximum number
of fusions of all subcircuits by 59.6% on average (up to 69.1%).
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1 INTRODUCTION
Measurement-based quantum computing (MBQC) is a promising
quantum computing paradigm that carries out computation through
one-way measurements on entangled photon qubits [13]. Recent
studies showed that practical photonic hardware first generates a 2D
mesh of resource states with each being multiple entangled photon
qubits and then exploits fusions to combine resource states to scale
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up to accomplish computation tasks [16]. Compared to mainstream
quantum computing paradigms (e.g., superconducting [12]), MBQC
exhibits good scalability and long coherence time. Photonic chips
that integrate both quantum photonic and electronic components
are being manufactured in the industry [6].

However, fusion is a highly error-prone, low-fidelity quantum
operation. Assuming its failure probability is 𝛼 , and mapping a
quantum circuit to photonic hardware results in 𝑛 fusions, the
circuit success rate is (1 − 𝛼)𝑛 , which deteriorates quickly with
large 𝑛 values. At 𝛼 = 1%, an MBQC circuit having 69 or more
fusions has a possibility lower than 50% to get the correct result.
This clearly is a big concern nowadays as 𝛼 is 10% [17] and a large
quantum circuit may result in thousands of fusions. While the
fusion failure is expected to reduce significantly with dramatic
advancements in photonic technology in near-term [5], even at
𝛼=0.1%, we can only improve 𝑛 to 693. Therefore, the number of
fusion operations remains a major constraint in MBQC paradigm.

Zhang et al. propose a compilation framework OneQ [7] to map
quantum circuits to physical resource states and take a pioneer-
ing step to reduce fusions from imperfect mapping. However, the
number of fusions is mostly determined by the size and complexity
of the quantum circuit. A large quantum circuit, even with OneQ
optimization, may result in a physical mapping with more than an
acceptable number of fusions. A simple yet effective approach is
to cut a large quantum circuit into smaller subcircuits and exploit
post-processing to combine the results from subcircuits, similar to
that in wire cutting [18]. On the one hand, cutting improves fidelity
as its fidelity is determined by the subcircuit with the most fusions.
On the other hand, cutting introduces a post-processing overhead
that increases exponentially with the number of cuts. Although
previous studies have exploited wire cutting to decompose circuits
[10, 18], they are fusion oblivious — since the number of fusions
cannot be determined until the given circuit gets mapped to physi-
cal resource states. More importantly, existing wire-cutting-based
solutions focus on generating subcircuits of limited width, which
might result in an imbalanced number of fusions for each subcircuit,
thereby suffering low overall fidelity.

In this paper, we propose FCM, a Fusion-aware Cutting approach
for MBQC. FCM splits a large quantum circuit into multiple subcir-
cuits such that each subcircuit has fewer fusion operations, which
significantly improves the fidelity. We formulate the problem using
mixed-integer programming (MIP) and exploit an MIP solver to
optimize cutting decisions under different settings. When cutting a
large circuit to𝑚 subcircuits, if our goal is to improve the fidelity,
we strive to balance the number of fusion counts in all subcircuits; if
our goal is to minimize the post-processing overhead, we prioritize
the number of cuts in choosing the cutting positions. The balance
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of fusion count per subcircuit would be relaxed as long as each
subcircuit has fewer than a threshold of fusions.

To summarize, we make the following contributions.
• We reveal the potential opportunity of decomposing a circuit for
fusion reduction through wire cutting.

• We formulate the problem using MIP and optimize cutting deci-
sions under different settings.

• We evaluate FCM on representative benchmarks. Our results
show that FCM achieves significant fusion reductions and post-
processing overhead reductions.

2 BACKGROUND AND RELATEDWORK
2.1 Measurement-based Quantum Computing
Measurement-based quantum computing (MBQC) is a promising
quantum computing paradigm that carries out computation through
one-way measurements on entangled photonic qubits [14]. When
deploying a quantum circuit for MBQC by the compiler, several
steps of transformation [7] are required to map the circuit to pho-
tonic hardware, which is demonstrated by Figure 1. A quantum
circuit (Figure 1(a)) is first transformed into the graph state (Figure
1(b)). It is then transformed into the fusion graph (Figure 1(c)) by
leveraging fusion operations. Each node in the fusion graph repre-
sents one resource state, e.g., a three-qubit resource state [11] in
the figure. In the end, the fusion graph is mapped to the photonic
hardware using the routing algorithm [7] (Figure 1(d)).
Graph state in MBQC. The graph state represents a quantum
circuit as a graph of entangled qubits, i.e.,𝐺 = (𝑉 , 𝐸), where qubits
at vertices are initialized as the |+⟩ state and controlled-Z gates at
edges are applied to the qubits whose corresponding vertices in the
graph are connected. Thus, the graph state can be defined as

|𝐺⟩ =
∏

(𝑎,𝑏 ) ∈𝐸
𝑈 {𝑎,𝑏} |+⟩⊗𝑉

where |+⟩ = 1√
2
( |0⟩ + |1⟩) and operator 𝑈 {𝑎,𝑏} stands for the

controlled-Z gate between qubits 𝑎 and 𝑏. With this graph state,
MBQC can be carried by a pattern of Z-measurements and equa-
torial measurements with specific measurement angles. Then, we
can obtain the measurement pattern for this graph state, which
is generated by combining the graph state with the measurement
basis of all qubits.

Figure 1 exploits an existing translation algorithm [2] to translate
the sample circuit (Figure 1(a)) to the graph state (Figure 1(b)). The
details of the algorithm can be found in [2]. In Figure 1(b), directed
edges indicate the dependency between qubits, and qubits with ’in’,
’out’, or ’in/out’ act as the input or output qubits in the given circuit.
Also, qubits are marked by the different measurement bases in the
graph state.
Fusion and fusion graph in MBQC. The fusion operation is
a native measurement operation in linear optics for MBQC. The
typical fusion with a success rate of 75% is called Bell fusion, which
applies the two-qubit measurement in Bell state projection [19] to
project a two-qubit state to an entangled state. The fusion used in
this paper is in XZ- and ZX-basis, which can connect one graph state
to the other one. Figure 1 demonstrates how one fusion connects

two graph states. The fusion performed on qubits 2 and 3 eliminates
these two qubits and attaches qubit 1 to qubit 4, merging two two-
qubit graph states into one two-qubit graph state. Recent studies
report that the success rate of single fusion can be improved further
(e.g., improved from 75% to 90% in some cases [17]).

The fusion graph is to bridge the gap between the graph state and
the photonic hardware — each node in the graph state is one qubit
state while each node in the photonic hardware is one three-qubit
resource state. For the generated fusion graph (Figure 1(c)), each
node is a resource state that contains three entangled qubits; and
each edge indicates the fusion operation that connects two resource
states. During the transformation, when there exist no sufficient
photonic qubits to be grouped into multiple resource states, the new
qubits need to be introduced so that each photonic qubit belongs
to one resource state.
Photonic hardware in MBQC. For Figure 1(d), nodes and edges
in the photonic hardware represent resource states and fusions,
respectively. All resource states of photonic hardware at one time
slot are referred to as one physical layer [7]. A mapped quantum
circuit may delay the photonic qubits in allocated resource states
to future time slots, resulting in occupying multiple layers. In this
paper, the number of physical layers occupied before and after
circuit cutting is reported as the physical depth.

2.2 Wire Cutting in Quantum Circuit
Wire cutting is a powerful tool for decomposing an𝑛-qubit quantum
circuit into multiple smaller ones (referred to as subcircuits) so
that each can fit on 𝑘-qubit quantum devices (𝑘<𝑛). For example,
the sample quantum circuit in Figure 2 can be wire cut into two
separated subcircuits 𝑐1 and 𝑐2.

Since the unitarymatrix of any quantum gate can be decomposed
into a set of orthonormal matrix bases, the result of the quantum
circuit can be obtained from post-processing the results from two
subcircuits. For qubit A in 𝑐1, multiple measurements in different
basis are performed on the upstream vertex of this cutting to gener-
ate three results. Thus, qubit A is called the measurement qubit in
this cutting. On the other hand, in circuit 𝑐2, four various initialized
states are assigned to the initialization qubit A’, the downstream
vertex of the cutting. It leads to four different output values of
𝑐2. In the end, all these results are combined to reconstruct the
result of the original circuit. More details about wire cutting and
reconstruction can be referred to [18].

It’s important to note that the post-processing overhead in-
creases exponentially with the number of cuts. Thus, finding a
cutting solution with a small number of cuts is critical for mitigat-
ing the post-processing overhead.

3 MOTIVATION
Since fusion is a highly error-prone and low-fidelity operation in
quantum computing, there exists a great necessity to reduce the
number of fusions for MBQC. A careful study of MBQC compilation
[7] reveals that the number of fusions in mapped photonic hard-
ware comes from two sources: (1) The larger the quantum circuit
is, the more fusions the photonic hardware needs. (2) The more
complicated geometry one quantum circuit owns, the more extra
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Figure 1: The compilation procedure of MBQC.

A

B

C

H

H

H

T

T A

B

H

H T

I, X, Y

A’

C H

T|1>, |0>,
|+>, |𝑖>,

𝑐!

𝑐"

Figure 2: Wire cutting splits one three-qubit circuit into two
two-qubit subcircuits.

fusions the mapping algorithm introduces to map its fusion graph
to the photonic hardware.

In this paper, we are motivated to exploit wire cutting to decom-
pose a large quantum circuit into several smaller subcircuits such
that each subcircuit (1) has fewer circuit gates and thus needs fewer
fusions; and (2) has simpler geometry and thus introduces fewer
extra fusions during hardware mapping. However, the more cuts
are applied, the higher the post-processing overhead is.
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Figure 3: An example on how wire cutting reduces fusions.
The original circuit requires four fusions in the fusion graph
while two subcircuits generated from one wire cutting only
introduce one fusion in each.

Figure 3 illustrates that cutting a large circuit into two smaller
circuits reduces fusions in each subcircuit and improves the overall
fidelity. For the sample circuit in Figure 3, we need four fusions in
the fusion graph. After wire cutting, each of the two subcircuits
needs one fusion only. Assuming the success rate of one fusion is
90%, wire cutting improves the fidelity from 65.6% to 90.0%.

155 Fusions

53 
Fusions

76 
Fusions

Figure 4: Applying four wire cuts on a complex circuits with
155 fusions after mapping generates two subcircuits, which
only have 53 fusions and 76 fusions, respectively.

Figure 4 illustrates that cutting can reduce the extra fusion opera-
tions when mapping the fusion graph to photonic hardware. While

a node on both fusion graph and photonic hardware represents a
resource state, the photonic hardware exhibits layout constraints —
one node has at most four neighbors on a 2D physical layer while
each corner node has two neighbors.

Consequently, mapping a high-degree node in a graph state
introduces extra fusions for the routing purpose, i.e., to connect
different computation components. In the figure, eight CZ gates
share the same control qubit q1 simultaneously, leading to a tree-
shape graph (e.g. Figure 1(b)) and extra fusions for the routing.
After performing four wire cuts, we obtain two subcircuits where
the maximum number of CZ gates sharing the same control qubit is
three. As a result, the numbers of fusions in the two subcircuits are
53 and 76, respectively. The sum of them is 17% smaller than the
original number, indicating a significant reduction of extra fusions.

Existing wire cutting schemes, e.g., CutQC [18] and Clifford-
based cutting [8], focus on decomposing a quantum circuit of width
𝑛 to run on quantum computers with 𝑘 physical qubits (𝑛>𝑘). They
are fusion-oblivious when searching for cutting solutions. How-
ever, for wire cutting on photonic MBQC, our cutting goal is i) to
balance fusions among different subcircuits and ii) to reduce the
extra fusions during mapping. Thus, a novel wire cutting approach
is needed to meet our design goal.

4 DESIGN
In this paper, we develop FCM, a Fusion-aware Cutting approach
for MBQC, that cuts a large quantum circuit into smaller subcircuits
with simpler geometry. We formulate the problem using MIP model
so as to find the best cutting decisions under different problem
settings. Once FCM splits the original circuit into subcircuits, it
deploys each subcircuit onto photonic hardware using OneQ, and
then combines the results through post-processing.

Intuitively, FCM strives to minimize the number of fusions in
each subcircuit and the number of cuts at the same time. The former
is to improve the overall computation fidelity while the latter is
to reduce the post-processing overhead. Our observations reveal
that the number of subcircuits largely determines the number of
fusions in each subcircuit. The elimination of extra fusions after
cutting, while being important, plays a secondary role. In Figure
4, extra fusions are reduced by nearly 20%. However, cutting an
𝑛-fusion circuit to four subcircuits instead of two subcircuits reduce
the number of fusions from the range of 0.5𝑛 to the range of 0.25𝑛.
Unfortunately, the more number of subcircuits FCM cuts the origi-
nal circuit to, the more number of cuts it requires. Therefore, we
may need to adjust our optimization goals under different settings.

We next present an illustrating example, assuming we are to
cut a 2000-fusion circuit into two subcircuits under three different
settings, we have following three kinds of solutions:
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(i) Balanced-FCM (B-FCM): If our goal is to improve computation
fidelity with a reasonable number of cuts, we seek for the best
trade-off between evenly distributing fusions into subcircuits and
reducing the number of cuts.

(ii) Threshold-FCM (T-FCM): If the success rate of a subcircuit that
has around 1500 fusions is acceptable, we strive to minimize the
post-processing cost while we relax the balance constraint and
focus on minimizing the number of cuts.

(iii) Fusion-FCM (F-FCM): If we strive to improve fidelity as much as
possible regardless of post-processing overhead, we may cut it
to two subcircuits only focusing on balancing the fusions.

4.1 FCM
We model the quantum circuit as a directed acyclic graph 𝐺 where
the vertices set 𝑉 = {𝑣1, ..., 𝑣𝑛𝑉 } represents multi-qubit gates mod-
eled and the edges set 𝐸 = {𝑒1, ..., 𝑒𝑛𝐸

} represents circuit wires. We
focus on two-qubit gates when finding the cutting solution because
single-qubit gates do not affect the circuit connectivity and do not
introduce extra fusions during hardware mapping. Note that FCM
also works for multi-qubit gates that involve more than two qubits
as all the multi-qubit gates can be decomposed to the native gate set
before the execution. We next list the parameters, the constraints,
and the objective function in the MIP model.

4.1.1 Constant Parameters. In FCM, the parameter 𝑛𝐶 specifies
the number of subcircuits generated after cutting, i.e., the set of
subcircuits are C = {𝑐1, ..., 𝑐𝑛𝐶 }. Also, to distinguish gates that cause
extra fusions in themapping phase from those that do not, we assign
a fusion weight 𝑓𝑣 to each two-qubit gate — its value depends on
whether the gate is sharing the same control qubit with others. For
those do not, we have 𝑓𝑣 = 1. For gates sharing the same control
qubit, firstly we count the number of them and those not. Then,
we map the given circuit to physical layers and generate fusions.
Next, we search for 𝑓𝑣 for gates sharing the same control qubits to
enable the sum of fusion weights for all two-qubit gates equal to
the number of generated fusions.

4.1.2 Variables. First, we model gates and wires in each subcircuit
with the following variables.

𝑦𝑣,𝑐 =

{
1 if vertex 𝑣 is in subcircuit 𝑐
0 otherwise

,∀𝑣 ∈ 𝑉 ,∀𝑐 ∈ 𝐶

𝑥𝑒,𝑐 =

{
1 if edge 𝑒 is cut by subcircuit 𝑐
0 otherwise

,∀𝑒 ∈ 𝐸,∀𝑐 ∈ 𝐶

We then define the total fusion weight for each subcircuit and
all subcircuits by the fusion weight of each gate as below:

𝑊𝑐 =
∑︁
𝑣∈𝑉

𝑓𝑣 ∗ 𝑦𝑣,𝑐 , ∀𝑐 ∈ 𝐶 (1)

𝑊 =
∑︁
𝑐∈𝐶

𝑊𝑐 (2)

4.1.3 Constraints. We next present the constraints that the vari-
ables must satisfy when searching for the solution. First, each vertex
must belong to one and the only one subcircuit, which can be de-
fined as below:

∑︁
𝑐∈𝐶

𝑦𝑣,𝑐 = 1, ∀𝑣 ∈ 𝑉 (3)

Then, for each edge, it can only exist in one of the subcircuits.
For an edge that is not cut, its two end vertices 𝑎 and 𝑏 belong to
the same subcircuit. However, if an edge is cut by a subcircuit, 𝑎
and 𝑏 would belong to two different subcircuits. As a result, we
have the following linear constraints:

𝑥𝑒,𝑐 ≤ 𝑦𝑒𝑎,𝑐 + 𝑦𝑒𝑏 ,𝑐
𝑥𝑒,𝑐 ≥ 𝑦𝑒𝑎,𝑐 − 𝑦𝑒𝑏 ,𝑐
𝑥𝑒,𝑐 ≥ 𝑦𝑒𝑏 ,𝑐 − 𝑦𝑒𝑎,𝑐

𝑥𝑒,𝑐 ≤ 2 − 𝑦𝑒𝑎,𝑐 − 𝑦𝑒𝑏 ,𝑐

(4)

For the fusion weight of each sub-circuit, we define a upper-
bound threshold 𝑇 , which can be customized for different problem
settings. Thus, we have the following constraint definition:

𝑊𝑐 ≤ 𝑇, ∀𝑐 ∈ 𝐶 (5)

4.1.4 Objective Function. Since our main goal is to reduce the
number of fusions in each subcircuit and to balance the fusions
among subcircuits, we choose to evenly distribute gates sharing
the same control qubits with other gates into different subcircuits.
These gates tend to introduce more extra fusions as we discussed
in Section 3. Because𝑊 is proportional to the one in the original
circuit, according to AM-GM Inequality [9], we achieve minimized
deviation among𝑊𝑐 values if their product is maximized. Hence,
we choose the following objective function to maximize in order to
find a better cutting solution:

𝐿 ≡
∏
𝑐∈𝐶

𝑊𝑐 ≡
∏
𝑐∈𝐶

∑︁
𝑣∈𝑉

𝑓𝑣 ∗ 𝑦𝑣,𝑐 (6)

It is known that the multiplication computation of variables is
non-linear, which is hard to solve for the MIP model. To address
that, we apply the piece-wise linear approximation of log function
in Gurobi [20] to simplify this objective function as follows:

𝐿 ≡
∑︁
𝑐∈𝐶

log
∑︁
𝑣∈𝑉

𝑓𝑣 ∗ 𝑦𝑣,𝑐 (7)

It’s notable that this piece-wise linear approximation of log func-
tion can be solved efficiently, similar as the linear function. By using
the log function, we can force the first term in equation 9 to be in
the same order of magnitude as the number of cuts in most cases.
Besides, because post-processing overhead grows as more cuts are
applied, we should also consider the number of cuts in the objective
function so that we can reduce the fusion of all subcircuits with
fewer cuts. As a result, the number of cuts and the final objective
function is defined below:

𝐾 =
1
2

∑︁
𝑐∈𝐶

∑︁
𝑒∈𝐸

𝑥𝑒,𝑐 (8)

𝐿 ≡ 𝛼
∑︁
𝑐∈𝐶

log
∑︁
𝑣∈𝑉

𝑓𝑣 ∗ 𝑦𝑣,𝑐 + 𝛽𝐾 (9)

where 𝛼 and 𝛽 are meta parameters. Overall, the MIP model can be
formulated as:
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𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑜𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐿(𝐸𝑞. 9)
𝑠 .𝑡 . 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝐸𝑞𝑠. (3, 4, 5) (10)

4.2 Case Studies
By choosing different meta parameters, we can adapt our FCM
model to meet different optimization goals.
(i) B-FCM:We choose 𝛼=1,𝛽=-1, indicating that we take both compu-

tation fidelity and post-processing cost into consideration. We set
𝑇=𝑊 , indicating we do not put a hard threshold on the number
of fusions per subcircuit.

(ii) T-FCM: We set 𝛼=0 and 𝛽=-1, indicating we no longer emphasize
balancing the fusions across subcircuits. Instead, we set 𝑇 to a
value determined by the single fusion success rate. In the experi-
ments, we choose 𝑇=500 and 1000, to study its effectiveness on
choosing different cutting decisions.

(iii) F-FCM: We set 𝛼=1 and 𝛽=0, indicating the post-processing over-
head is ignored. While we set 𝑇=𝑊 , it has little impact as our
goal is to balance fusions across subcircuits, which achieves the
best computation fidelty with a given number of subcircuits.

5 EVALUATION
5.1 Benchmarks and Metrics
We conduct the evaluation of our methods using five benchmarks,
including supremacy [15], Approximate Quantum Fourier Trans-
form (aqft) [1], Bernstein–Vazirani (bv) [3], Quantum Approxi-
mate Optimization Algorithm (qaoa) [4], and random. The depth
of supremacy and random is configured as 20 and 40, respectively.
For bv, we randomly generate secret strings with the number of
qubits as the length of the string. The quantum circuits in qaoa
and random are generated randomly without any restriction, while
gates in other benchmarks are generated by repeated specific pat-
terns. In the evaluation, we set the area size of each physical layer as
16 × 16 and evaluate each benchmark with three different numbers
of qubits as 16, 25, and 36. We apply the mathematical optimiza-
tion solver Gurobi [20] as MIP model solver backend and set the
maximum timeout of solving the MIP model as 300 seconds.

We compare our methods against the baseline, which is to take
the original circuit as input and deliver the mapping result using
OneQ. We use three metrics to evaluate our method: the number of
fusions, the physical depth, and the number of cuts. For the number
of fusions and the physical depth, we only report the maximum
value of them among all subcircuits as the maximum determines
the fidelity as we discussed in Section 3.

5.2 Result
5.2.1 B-FCM. Figure 5 reports the reduction of fusions achieved
by B-FCM when cutting the original circuit into 𝑘 subcircuits (𝑘=2,
3, and 4). From the figure, the average reductions of the maximum
number of fusions are 50.6%, 66.2%, and 75.6% when 𝑘=2, 3, and 4,
respectively. Theoretically, cutting a circuit into two subcircuits,
i.e, 𝑘=2, can achieve reduction higher than 50% if the fusions are
perfectly balanced. Similar theoretical lower bound of reductions
66.7% and 75% exist for 𝑘=3 and 4. While our averages are close to
their theoretical average lower bounds, B-FCM on quantum circuits
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Figure 5: Reduction of the maximum number of fusions
achieved by B-FCM on five benchmarks (ABC-# indicates
benchmark ABC with # numbers of qubits).
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Figure 6: Reduction of the maximum number of physical
depths achieved by B-FCM on five benchmarks (ABC-# indi-
cates benchmark ABC with # numbers of qubits).

having random patterns, e.g., qaoa and random, achieves higher
reductions. This is because these circuits have more cases in which
multiple gates share the same control qubit and thus require more
extra fusions during hardware mapping. B-FCM distributes these
gates to different subcircuits, leading to more reductions.

Other benchmarks, e.g., supremacy-25, achieve 25% reduction
for 𝑘=2, which is lower than the theoretical 50% for a balanced
fusion split. B-FCM chooses the reported cutting solutions because
it considers both the balanced fusion split and the number of cuts.
We evaluate the best effectiveness of FCM on fusion reduction by
F-FCM, which is demonstrated in section 5.2.2.

Figure 6 reports the reductions of the maximum physical depth
among all subcircuits with different numbers of subcircuits 𝑘 . From
the figure, the average reductions of the physical depth are 31.6%,
47.8%, and 58.3% when 𝑘=2, 3, and 4, respectively. For qaoa and
random, B-FCM can achieve 55.4% and 51.8% reductions, respec-
tively. They are bigger than the overall average 45.9%. This is be-
cause when mapping the fusion graph to physical layers, to accom-
modate the cases that some gates share the same control qubits,
qubits tend to be delayed to upcoming layers to avoid extra fusions.
Therefore, cutting simplifies the subcircuit and thus reduces more
physical layers.

Table 1 presents the number of cuts applied by B-FCM on five
benchmarks to obtain subcircuits of different numbers. In most
cases except bv, the number of cuts increases as the number of
qubits or the number of subcircuits grows. This is because in bv, all
the two-qubits gates are using different qubits as the same control
qubit and the same qubit as the target qubit. Consequently, cuts
required to decompose the original circuit into multiple subcircuits
are all performed on the target qubits, and the number of cuts
always equals to the number of subcircuit minus one.
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Regarding the time cost, the average searching time on all bench-
marks is 9.06 seconds, 104.63 seconds, and 195.01 seconds where
the number of subcircuits is 2, 3, and 4, respectively. For all cases,
B-FCM manages to provide solutions with a significant reduction
of fusions within the given period.

Benchmark #Qubit #Cuts used for different #Subcircuits
2 3 4

supremacy
16 10 15 20
25 12 19 25
36 15 23 29

qaoa
16 14 23 32
25 18 26 36
36 19 33 44

aqft
16 5 10 15
25 5 10 15
36 6 12 18

bv
16 1 2 3
25 1 2 3
36 1 2 3

random
16 14 21 31
25 17 30 41
36 22 27 56

Table 1: The number of cuts applied by B-FCM to decompose
circuits of various widths into subcircuits.

5.2.2 F-FCM. When the optimization goal is the fusion reduction,
F-FCM reduces fusions by 59.6%, 76.0% and 83.6% on average (up to
69.1%, 85.5%, and 90.7%) for 𝑘=2, 3, and 4, respectively. The smallest
improvement is 55.8% reduction for bv-25with 𝑘=2, which is better
than the theoretical 50% due to the elimination of extra fusions.
Regarding the reduction of physical depths, F-FCM can achieve
42.5%, 56.5%, and 67.8% on average for 𝑘=2, 3, and 4, respectively.

Note, choosing 𝛽=0 results in significantly more numbers of cuts,
the average numbers of cuts increase by 1.68x, 1.49x, and 1.38x
when 𝑘 = 2, 3, and 4, respectively.

5.2.3 T-FCM. In this section, we evaluate T-FCM only on bench-
marks random and qaoa since they are the most complicated ones
generating large numbers of fusions. Table 2 reports the reduction
of cuts and the number of subcircuits under different thresholds 𝑇 .
A threshold 𝑇 indicates that the fidelity is acceptable if the number
of fusions for a mapped photonic hardware is below 𝑇 .

When setting the threshold to be 1000 and 500, T-FCM reduces
cuts by 12.9% and 15% on average over B-FCM, respectively. For
benchmark random-16, since the number of fusions in the original
circuit is below 1000, there is no need to perform any cut if𝑇=1000.

5.2.4 Comparison to CutQC. CutQC [18] was proposed to cut a
circuit into smaller subcircuits so that they can run on supercon-
ducting quantum computers with fewer qubits. The number of
subcircuits and the number of quantum devices with limited size
are constants. Naively adapting CutQC to solve the problem for
MBQC leads to sub-optimal results.

A comparison between B-FCM and CutQC shows that B-FCM
outperforms CutQC by 40.1%, 24.9%, and 15.6% on average when
𝑘=2, 3, and 4, respectively. The two schemes have similar numbers
of cuts while B-FCM has one or two more cuts for some large
circuits, due to choosing different cutting decisions.

5.2.5 Result Correctness. Based on the wire-cutting theory and the
re-construction process introduced and proved in [18], our cutting
solution outputs the same result as the original circuit.

Benchmark #Qubit
Reduction of #Cuts (#Subcircuits)

under different thresholds𝑇
1000 500

random
16 - (-) 7.1% (2)
25 15.0% (2) 12.2% (3)
36 14.3% (2) 11.6% (4)

qaoa
16 13.3% (2) 21.7% (3)
25 11.1% (2) 19.2% (3)
36 10.5% (2) 18.2% (4)

Table 2: With different threshold 𝑇 , the reduction of #Cuts
gained by T-FCM compared to B-FCM on qaoa and random.

6 CONCLUSION
This paper is the first to present the insight that wire cutting can
be leveraged to reduce fusions in MBQC. We propose FCM to de-
compose a large circuit into subcircuits for improved computation
fidelity. It leverages the fusion weight to distinguish the two-qubit
gates that tend to generate more extra fusions and constructs an
MIP model to find the optimal cut solution under three typical set-
tings. With appropriate adjustments, FCM can be adapted to meet
the cutting demands with special design goals.
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