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Abstract—Nowadays, Graphics Processing Units (GPUs) dom-
inate in a wide spectrum of computing realms and multi-task is
increasingly applied in various complicated applications. To gain
higher performance, multi-task programs require cumbersome
programming efforts to take advantage of inter-kernel concur-
rency at source-code level. Although there exist works auto-
matically scheduling kernels to enable inter-kernel concurrency,
they all inevitably introduce new programming frameworks and
some even bring significant performance downgrade compared
to the expertise-based optimizations. To address this issue, we
propose KeSCo, a compiler-based scheduler to expose kernel
level concurrency in multi-task programs with trivial code mod-
ification. In compilation, KeSCo applies a strategy to schedule
kernels in task queues, accounting for both load balance and
synchronization cost. Also, KeSCo utilizes a customized algorithm
designed for computational flow to remove redundant synchro-
nizations. The design is further extended to support multi-
process scenario, where multiple GPU processes are sharing a
single context. Evaluations on representative benchmarks show
that the proposed approach gains a 1.28× average speedup
for multi-task scenario (1.22× for multi-process). Even with
lessened programming efforts, our proposed design outperforms
two state-of-the-arts GrSched and Taskflow by 1.31× and 1.16×
on average, respectively.

Index Terms—GPU, Compiler, Multi-Task, Kernel Scheduling

I. INTRODUCTION

In the last decade, Graphics Processing Units (GPUs)
have been widely applied in a myriad of domains, owing
to their excessive computation capability and high memory
throughput. Advanced GPUs incorporate ample resources than
what a typical monolithic GPU task or kernel necessitates
and are thus frequently being underutilized, especially when
executing single-task programs, which launch just one kernel
at a time. To alleviate the under-utilization issue, a plethora of
approaches have been proposed, like concurrently executing
sliced kernels [1] and resource virtualization [2].
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However, as GPU applications getting more complex, multi-
task programs, originally consisting of concurrently executable
kernels, show up in diverse domains. Compared to single-task
programs with constrained inter-kernel concurrency, multi-task
programs can leverage various GPU streams and synchroniza-
tion events to parallelize serial kernel executions to efficiently
shorten run time. Such an optimization requires developers
to correctly analyze dependency between kernels and then
re-arrange kernels in task queues to strike load balance and
minimize synchronization cost. With no doubt, considerable
programming efforts should be paid to obtain bug-free and
highly performant codes, particularly for increasingly compli-
cated programs. To address the issue, a bunch of designs have
been recently presented to automate inter-kernel concurrency
of GPU applications, especially for general high performance
computing (HPC). RAMMER [3] focuses on inter- and intra-
kernel concurrency in Recursive Neural Network (RNN), but
lacks scalability to handle general programs. Taskflow [4]
proposes a new heterogeneous programming framework for
automatic optimization of inter-kernel concurrency. It har-
nesses cudaGraph [5] to reduce overheads of fragmented ker-
nel launches. Nevertheless, such method requires developers
to grasp a new programming model and manually specify
kernel dependencies, inevitably raising coding difficulty. A
GrCUDA-based [6] runtime approach [7] applies a virtual
machine, exempting developers from the need to explicitly
claim kernel dependencies. But compared to expertise-based
optimizations, it introduces serious performance downgrade
due to the overheads of run-time scheduling.

To automatically achieve kernel concurrency in multi-task
programs at source-code level with petty programming effort,
we propose KeSCo, a compiler-based static kernel scheduler
requiring trivial code modification. It automatically identi-
fies data dependencies and then places kernels into different
streams concerning load balance and synchronization cost.
The transformed code is a highly performant executable with
kernels being ready to run concurrently. The design is further
extended to schedule a collective of prioritized multi-task



processes, which is common in today’s GPU space-sharing
scenario. The scheduler maintains a stream zone for each
sub-program, actively issues kernels of high priority, and
meanwhile demotes leftover kernels via adding barriers across
zones. This promotes the early completion time of highly
prioritized tasks while saturating GPU resources with the low-
priority ones, thus effectively reducing the makespan of the
whole program.

In summary, the contributions of this paper are:
• We highlight the inadequate performance enhancement

and programming weakness of prior arts in automati-
cally achieving inter-kernel concurrency for multi-task
programs.

• We propose a static scheduler for inter-kernel concur-
rency in multi-task programs, well accounting for both
load balance and synchronization cost.

• We design a priority-based scheduling strategy for kernels
across multi-task programs, with lowered programming
burden to enable high kernel concurrency and facilitate
prioritized kernels to speed up executions.

• The evaluations show that our design can effectively
raise kernel-level parallelism to boost GPU performance,
outperforming the state-of-the-arts with obviously less
programming efforts.

II. BACKGROUND AND MOTIVATION

A. Concurrent Kernel Execution (CKE)

Designed for massively parallel computation, modern GPUs
are typically equipped with many streaming multiprocessors
(SMs), each of which has hundreds of computing cores and
can simultaneously execute up to thousands of threads. In
most cases, one single kernel cannot fully utilize all resources,
thus causing a great waste of computation power and low
performance. To alleviate such a problem, CKE parallelizes
inter-kernel execution on available hardware components. It
issues operations in multiple software task queues (called
streams in CUDA [5]), which are mapped onto different
hardware queues and processed concurrently if the demanded
resources, typically SMs, are sufficient.

The multi-task workloads provide a perfect scenario to
implement CKE for acceleration, as they have independent
kernels ready to execute concurrently. Developers need to
properly scrutinize the complex dependency, schedule kernels
in streams, and generate synchronization barriers. Such code
re-organization incurs tremendous manual efforts and is thus
also error-prone. This laborious process can be automated at
different levels of granularity. Many DL compilers like TVM
[8] or XLA [9] leverage dedicated collaboration with domain-
specific language (DSL) embedded in Python for such task-
level parallelization. In HPC where applications are majorly
implemented in C++ with GPU programming model, paral-
lelization is exploited at finer sub-task level. Representative
techniques include slicing kernels into sub-kernels to saturate
GPU resources [10][11], and employing preemption for high-
priority tasks [12][13]. They involve coupled compiler-runtime
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Fig. 1: Execution of concurrent tasks on GPU.

systems for thorough optimizations and have shown great
improvement in performance. Nevertheless, these intra-kernel
approaches necessitate fine-grained code transformation inside
kernels, which becomes infeasible when dealing with hand-
tuned kernels or hardware vendors’ highly optimized closed-
source libraries having no available codes.

B. CKE Programming in CUDA

Many popular GPU programming models offer a series
of concurrency APIs for CKE, here we take CUDA as an
example. A data flow graph (DFG) needs to be constructed
correctly first to help schedule the executions. The DFG is
further divided into multiple levels such that kernels from the
same level have no data dependence. Then developers need to
create multiple CUDA streams, and issue kernels on different
streams to co-execute on GPUs. To ensure the execution
order of data dependent kernels across streams, CUDA events
are inserted after a kernel’s predecessors as trackers of the
completion state, which are awaited by the synchronization
barriers before the kernel.

Figure 1 shows an example of three concurrent tasks sharing
a GPU. Kernels B and C, are mutually independent, both
depend on kernel A. After kernel A finishes, kernels B and C
are issued on different streams and executed simultaneously
on different SMs. At the same time, an asynchronous copy
is proceeding on the copy engine, which is a complementary
hardware resource with respect to SMs. Therefore computation
of the two kernels and data transfer are overlapped, helping
utilize the abundant resources of GPUs.

C. Motivation

1) Programming Efforts: Aiming to automate inter-kernel
CKE for GPU programs, approaches like Taskflow [4] and a
GrCUDA-based [6] scheduler (aliased as GrSched for ease of
reference)[7] have been proposed to craft new programming
frameworks by extending CUDA’s API for stream management
and synchronization. Taskflow demands explicitly specifying
dependencies through its APIs, while GrSched introduces
DSL embedded in Python to support automatic analysis and
scheduling. In Figure 2a, we evaluate the programming efforts
required by implementing CKE at source-code level in three
benchmarks elaborated in Section IV-A. Compared with serial
execution, manual optimization with CUDA’s streams and
events APIs (named Async in figures) costs 6.97× extra tokens
to fully expose the kernel concurrency. Taskflow and GrSched
yet involve 1.79× and 4.19× additional tokens respectively,
to transplant the serial implementation into their programming



models. In contrast with Async, they provide straightforward
view of dependencies and facilitate maintainability, but yield
thorough refactoring of source code.

2) Scheduling Policy: Another preliminary study finds that
the aforementioned frameworks would bring serious perfor-
mance penalties compared to the expertise optimization (the
Async scheme). Figure 2b illustrates the actual overlapped time
with respect to the theoretical peak. Figure 2c explores the
speedup of each kernel normalized to the serial execution. The
static scheduler Taskflow’s overlap ratio is slightly higher than
Async, but the makespan is 34.1% longer. This performance
degradation is caused by prolonged kernel execution time,
indicating that the scheduler issues excessive kernels and thus
poses resource competition. As a dynamic scheduler, GrSched
insufficiently overlaps the computation, with only 39% to the
theoretical maximum and 81.1% slower than Async. The major
reason is the overhead brought by runtime dependency analy-
sis, blocking CPU from launching GPU kernels concurrently.
We observe from the above cases that performance gain is two-
folded as contributed by both the overlap ratio and the number
of issued kernels. A balance between them is demanded to
bring an optimal scheduling policy.

3) Multi-process Scenario: It is prevalent to serve multiple
programs with different priorities on a single GPU since one
application might not fully utilize all GPU resources [14].
To improve the performance of multi-program on a shared
GPU, Nvidia MPS [15] transparently co-operates multiple
CUDA processes at runtime. This code-free tool eliminates
manual labor but has no guarantee for priority and suffers from
overheads of dynamic scheduling. Other prior arts including
GrSched and Taskflow are designed for scheduling one single
program and lack prioritized scheduling mechanisms to ensure
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Fig. 2: Analysis on three applications with 12 kernels and
10 dependencies on average. Over 5 of the kernels in each
application can be executed concurrently.

the early completion of high-priority programs, hindering
their extension in the multi-process scenario. Therefore, there
remains the urgency for a source code-level approach capable
of priority-based scheduling without involving much program-
ming effort in these complicated scenarios.

The aforementioned observations suggest that the sched-
ulers wrapped as new programming frameworks incur in-
efficient scheduling strategies and strenuous programming
efforts. Instead, a compiler-based approach naturally grasps
global information about the application and optimizes in-
depth without refactoring the source code. To this end, we
propose KeSCo to automate the scheduling at compile-time
and achieve competent performance compared with manual-
optimized approach.

III. DESIGN

We introduce KeSCo, a compiler-based static scheduler
for concurrent kernel execution in multi-task programs, to
automatically enable inter-kernel concurrency1. It leverages
lightweight code modifications to help construct data flow
graph (DFG) of kernels and then schedules kernels to mul-
tiple streams as well as generates synchronization barriers to
guarantee correct execution order with low cost. In addition
to supporting inter-kernel concurrency in a single program,
we extend KeSCo to support multi-process scheduling while
meeting the requirements of early completion of high-priority
sub-programs2 and saturating hardware resources with low-
priority ones.

A. Overview

Figure 3 shows the overall workflow of our proposed design.
The input is the source code of an application with serial
execution and the output is a high-performance executable
with concurrent kernel execution. The optimizing procedure
consists of three parts: DFG constructor, kernel distributor,
and synchronization generator. As the forefront phase, DFG
constructor analyzes the input and output of each GPU kernel
and builds a data flow graph according to their execution order.
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3. Synchronization
Generator
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Fig. 3: General workflow of KeSCo to transform serial source
code into the executable with efficient parallelism.

1The proposed design is a kernel-level scheduler. Therefore we refer to
kernel and task interchangeably, unless otherwise specifically stated.

2We indicate sub-program as a distinct multi-task application, com-
pounded in the multi-process application.



Then the kernel distributor leverages the graph and schedules
kernels into different streams. Last, the synchronization gen-
erator creates barriers for dependent kernels .

B. DFG Constructor

DFG constructor analyzes dependencies among kernels
based on their serial execution order and the relations of Write-
After-Read (WAR), Write-After-Write (WAW) and Read-
After-Write (RAW). As massive dependencies for variables are
ubiquitous in complex HPC programs, it can be expensive to
construct the kernels’ dependency graph from the complicated
data flow. To reduce repeated search operations, we construct
the DFG by finding all predecessors of a kernel. Kernels are
iterated by their reversed execution order. For every kernel,
breadth-first search is adopted to find its direct predecessors
and terminated once all of them are found. Additionally, to
distinguish read-only from writable parameters of kernels,
which are passed as pointers and potentially have identical
memory addresses, hindering compiler-based approach from
analyzing them statically, developers are necessitated to add
a light wrapper to the kernel. The mechanism is detailed in
Section III-F.

C. Kernel Distributor

When the DFG is determined, kernel distributor places
the kernels in GPU streams in the order explained below to
gain computational overlap. First, it levelizes the DFG so that
kernels in the same level have no mutual data dependency.
At each level, the kernels are assigned with a unique index
value. Then kernels are placed in the first level using their
indices modulo to the stream count. For the remaining kernels,
the distributor follows a set of rules in consideration of load
balance and synchronization cost. ❶ The key idea of the rules
is that a kernel issues right after any of its predecessors when
possible, to reduce synchronizations among streams. We call
these predecessors a preferred predecessor set (PP-Set). ❷

To avoid conflict when multiple kernels’ PP-Set intersects,
we sort the kernels by the size of the PP-Set, schedule the
kernels with smaller PP-Set first, and then update the PP-Set of
unscheduled kernels. ❸ If there still exist conflicts, the kernel
is randomly assigned to a stream containing its predecessor.

Here we exemplify the above steps with regard to the given
DFG in Figure 4 and the corresponding kernel distribution
strategy in Figure 5. Kernels in level 1 are put to the stream
by their indices accordingly. In level 2, kernel F is scheduled
first by rule ❷ as it has the smallest PP-Set, and is positioned

A(1) B(2) C(3)

D(1) E(2)

G(1)

F(3)

H(2) I(3) J(4)

Level 1

Level 3

Level 2

Fig. 4: A DFG organized in three levels to schedule ten kernels
onto three available streams.

after kernel C by rule ❶. Then kernel E’s updated PP-Set is
smaller than that of kernel D, and is thus arranged after kernel
A. Finally, kernel D is put after kernel B as accounting for rule
❶ again. In level 3, we repeat the process and schedule them
in the order of kernel H, I, and J, which are all placed after
their preferred predecessor. Lastly kernel G can choose from
stream 1 and 3, where its predecessors are seated, and are
randomly inserted in stream 3, as shown in Figure 4.

D. Synchronization Generator

After scheduling kernels in asynchronous streams, synchro-
nization generator comes into play to ensure the correctness
of the execution order. A naive approach is to create barriers
whenever a data dependence exists. However, a part of the
barriers are redundant and may cause performance overhead.
To tackle this issue, a pruning algorithm is proposed based
on the implicit synchronizations brought by the transitivity of
dependency and serial execution of kernels in the same stream.
When finish, the barriers are pruned to the minimum.

The synchronization generator traverses the kernels in each
stream and works in three steps, suppose it is working on
kernel K. In step ❶, it creates barriers for each of K’s prede-
cessors which do not share the stream with K. In step ❷, it
checks K’s predecessors in each stream, and reserves only the
synchronization issued from the last predecessor in that stream.
In step ❸, it enumerates kernels before K in the same stream,
say T . If a K and T ’s predecessor share the same stream, and
K’s predecessor is executed before T ’s, K is then implicitly
synchronized by T and T ’s predecessor. Therefore K’s barrier
to that predecessor is safe to be removed. Full analysis of
the complete DFG helps eliminate these redundant barriers
correctly. In run-time analysis of GrSched, such elimination is
infeasible due to the lack of a global view of the graph.

The example of Figure 5 shows the barriers generated in
solid lines and the removed barriers in dashed lines. Synchro-
nization generator scans stream 1 and creates kernel E and
I’s barriers by step ❶. The same is true for kernel D in stream
2 and kernel J in 3. For kernel G, step ❸ detects its implicit
synchronization with kernel A by the execution order of A →
E → J , so the barrier is removed.

E. Kernel Scheduling in Prioritized Multi-process

The proposed design above focuses on enabling inter-kernel
concurrency in a single program, and it is extensible to
schedule independent sub-programs with diverse priorities in
conformity to today’s GPU sharing scenario. We introduce

B(2)
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E(2)

G(1)F(3)

H(2)

I(3)

J(4)

Stream 1

Stream 3

Stream 2
Generated
Barrier

Removed
Barrier

A(1) Numbers are their
scheduling order in
the kernel distributor

Fig. 5: Scheduling strategy of kernel distributor and synchro-
nization generator for the DFG in Fig. 4.



stream zone manager as an orthogonal module with kernel
distributor and synchronization generator to coordinate among
sub-programs and limit the number of issued kernels in
avoidance of resource competition.

In the design extension, developers first manually wrap
independent applications as distinct functions, and stream
zone manager provides each sub-program a separated set
of streams, in which the kernel distributor and synchroniza-
tion generator schedules the sub-program’s tasks. Policies on
scheduling across stream zones are straightforward: ❶ The
foremost is creating barriers for low-priority tasks to block
them until the high-priority ones are finished; ❷ Then for tasks
of the same priority, the number of issued kernels is limited by
a hyper-parameter3; ❸ If there is only one kernel left to execute
a high-priority task, an additional kernel from a lower-priority
task is issued beforehand. This is because a single kernel can
rarely saturate all GPU resources. The above steps introduce a
significant number of synchronization barriers and are pruned
by synchronization generator. Figure 6 shows an example of
scheduling two sub-programs. Kernels A, B, and C are issued
first as they are of high priorities. By the additional rule ❸,
kernel 1 is promoted to launch in interleave with kernel C,
and barriers are generated for kernels 2, 3, and 4.

F. Implementation

Figure 7 shows the implementation pipeline of KeSCo,
on basis of LLVM Compiler Infrastructure [16]. Although
targeting at the CUDA platform, our design can be easily
applied to other frameworks that support concurrent task
queues (e.g. HIP [17] and SYCL [18]). The GPU kernel
code is separated from the host (CPU) code and compiled
individually to binary, while host code is compiled to inter-
mediate representation (IR). The binary file of GPU kernels is
embedded into host IR file and kernel functions are called by
cudaPushCallConfiguration. We pinpoint this pattern
to find the serial-issued kernels in host IR and apply our
optimizations to their caller functions.

Identifying writable parameters at the compiler level is a
challenging task, as computational data is often passed as
pointers. These pointers may have identical addresses, mak-
ing it impossible to discern between read-only and writable
memory locations at compile time. As a workaround, devel-
opers necessitate adding a lightweight wrapper to the kernel,
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Fig. 6: Two sub-programs in a multi-process workload are
scheduled based on priority.

3Tuning of this parameter is left to future work. It is set to six in our
experiments as it saturates our device in most cases.

which specifies the number of writable parameters Nout and
rearranges them to the first Nout parameters. The wrapper
additionally takes a parameter specifying the kernel priority, to
work with stream zone manager. This technique enables DFG
constructor to analyze dependencies automatically, without
involving any new programming framework.
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Fig. 7: The processing framework of KeSCo implementation.
Stream zone manager will be activated if sub-programs with
various priorities are contained.

IV. EXPERIMENTAL EVALUATION & RESULTS

A. Experimental Setup

1) Platforms: We conduct experiments on a server
equipped with Nvidia A100-PCIe-40GB GPUs, an AMD
EPYC 7742 64-Core CPU and 256GB DRAM. The operating
system is Debian 5.10.179 and the version of Nvidia driver is
470.182.03. We compile GPU programs using LLVM 14.0.0
and CUDA 11.4.4, with the compiler option -O3 switched on
to optimize performance.

2) Benchmarks: We use eight representative workloads
listed in Table I. The two in-house micro-benchmark are drawn
from the kernels in Nvidia FasterTransformer[19], the rest
benchmarks are introduced in [7].

TABLE I: Evaluated benchmarks.

Name Notation Domain Max DFG Width

Micro-1 M1 AI 6
Micro-2 M2 AI 12

Vector Square VEC HPC 2
Black & Scholes B&S HPC 10
Image Processing IMG HPC 3
Machine Learning ML AI 2

HITS HITS HPC 2
Deep Learning DL AI 2

3) Evaluated Schemes: We compare KeSCo against the
baseline (serial execution, named Serial below), the one
with expertise concurrency optimization (using CUDA’s APIs,
named Async) and two prior arts including a static scheduler
Taskflow [4] and a dynamic scheduler [7] based on GrCUDA
[6] (denoted as GrSched).

4) Metrics: To quantify programming efforts, we consider
the Line of Code (LoC) and the number of tokens needed in
the manual modification. And, for performance, we average
the execution time of all GPU kernels in 10 repeated runs.

B. Programming Effort

Table II lists the programming efforts required by different
schemes, in terms of the average LoC and token count.
Compared with Serial, KeSCo costs only 2.3% LoC and 6.1%



tokens in extra to enable CKE and automates both dependency
analysis and concurrency management. The extra code is
sourced from the kernels’ light wrapper for writable parameter
identification, and our compiler-based approach encompasses
the rest of transformation and optimization. In contrast, sig-
nificant code modification is involved in other schemes. Async
necessitates manually managing CUDA’s asynchronous APIs,
while Taskflow lessened this burden and still requires explicit
dependence specification. GrSched has the merit of automation
but is limited to dynamic programming language for runtime
analysis. KeSCo covers both automation and adaptation in
enabling inter-kernel concurrency, and has the benefit of
fulfillment in complex scenarios.

C. Speedup in Multi-task Programs

We conduct the evaluations with input consuming around
5GB of memory for each benchmark. The kernel launch
configurations vary in block sizes (the number of threads per
block) under a fixed number of grid size (the number of
blocks) where Serial achieves the highest performance. For
each benchmark using the 1D thread block, we average results
for the block sizes from 32 to 1024. For those using the 2D
or 3D thread block (e.g. HITS, IMG, and DL), the block
sizes range from 8 or 16 to the maximum acceptable size. We
report the execution time in Figure 8. KeSCo achieves 1.28×
average speedup for all benchmarks, comparable to Async.
On the other hand, GrSched and Taskflow achieve 0.98× and
1.10× speedup on average, respectively. For GrSched, the
most significant performance penalty comes from the high
cost of dynamic scheduling, including dependency analysis as
well as runtime capture and issue kernels. Furthermore, such
overhead prevents the CPU from launching kernels simulta-
neously. When the kernels complete shortly (e.g. the input
size decreases or launched threads increase), the overhead
takes a higher proportion of execution time. This worsens
the insufficient overlaps among kernels and thus lowers the
performance.

The above evaluation mainly takes into account the schedul-
ing among kernels. But in more general scenarios, data transfer
is also a significant factor affecting performance. Thus, we
evaluate different schemes except Taskflow4 on three repre-

TABLE II: Average programming efforts.

Scheme LoC #Tokens D.A.a C.M.b N.P.Fc P.L.d

Serial 86 378 ✗ ✗ ✓ C++
Async 106 483 ✗ ✗ ✓ C++

Taskflow 173 914 ✗ ✓ ✗ C++
GrSched 366 1832 ✓ ✓ ✗ Python
KeSCo 88 401 ✓ ✓ ✓ C++

a Automatic Dependency Analysis
b Automatic Concurrency Management
c No New Programming Framework
d Programming Language

4The evaluation requires virtual memory mechanism of GPU and asyn-
chronous data prefetch for overlapping computation with data transfer, which
is not yet supported in Taskflow
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sentative benchmarks, each of which involves over twenty op-
erations of data transfer in scheduling. Figure 9 demonstrates
the result. KeSCo achieves 5.01× average speedup, which is
only about 7% lower than Async, and outperforms GrSched
by 31.5%. This performance gap between KeSCo and Async
is due to the insufficient overlap of data transfer and kernels,
which is caused by the hash-based distributing algorithm for
kernels or operations.

D. Hardware Resource Utilization

In this section, we analyze how KeSCo affects hardware
metrics such as FP32/64 instruction throughput, memory band-
width utilization and SM occupancy. We leverage DGCM [20],
a tool for monitoring global hardware-level metrics of GPU
with low overheads, to collect the average value of each metric
with an interval of one millisecond during each execution.
Figure 10 details the improvement of these metrics achieved
by KeSCo. With KeSCo being enabled, the average FP32/64
instruction throughput, memory bandwidth utilization, and SM
occupancy on all benchmarks increases by 1.78×, 1.61×
and 2.76×, respectively. Particularly, the memory bandwidth
throughput of VEC increases by 1.98×, indicating that the
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Fig. 10: Hardware metric improvement gained by KeSCo in
different benchmarks, under the setting where KeSCo achieves
the highest speedup.



acceleration of VEC mostly benefits from this. For M1,
M2, and B&S, KeSCo greatly raises the SM occupancy and
the throughput of FP32/64 instructions, thus utilizing more
computation resources and improving performance.

E. Sensitivity Studies

In this section, we study how KeSCo’s performance is
affected by different kernel inputs and stream counts. We
evaluate all schemes on each benchmark with input sizes
ranging from 1 - 10GB of memory occupancy. Figure 11
illustrates the results. KeSCo achieves an average speedup of
1.28× under all inputs, which is almost identical to Async.
However, GrSched’s performance is unstable under varying
input sizes. This is because GrSched’s kernel overlap depends
on the ratio of dynamic scheduling overhead to the time cost
of kernels, which varies greatly with input size.

For the robustness study on CUDA stream counts used in
KeSCo, we evaluate three benchmarks whose DFG maximum
widths are over five. Figure 12 details the results under the
launch setting where KeSCo gains the highest speedup. For
B&S, KeSCo achieves the highest speedup 2.76× with six
streams and downgrades as the stream increases. We used
Nvidia Nsight Systems to profile and observe that up to
seven kernels execute simultaneously on GPU, indicating the
hardware resource is saturated by seven kernels. Therefore in-
creasing streams aggravates resource competition and reduces
performance. For M1 and M2, the max concurrency of kernels
is also limited to eight for the same reason.

F. Speedup in Multi-process Scenarios

To evaluate how much KeSCo can deliver acceleration
in multi-process scenarios where sub-programs have differ-
ent priorities, we construct two in-house micro-benchmarks
with workloads from Table I. We compare KeSCo with ❶

the Baseline scheme where sub-programs will be launched
independently on GPU at the same time, and ❷ the scheme
where Nvidia MPS[15] is enabled to transparently schedule
these sub-programs. Figure 13 compares the speedup of each
sub-program and the whole application gained by these three
schemes. On MP-1, KeSCo outperforms MPS by 23.1%
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Fig. 11: Average speedup achieved by different schemes under
different input sizes and multiple launch settings.
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Fig. 12: Speedup achieved by KeSCo with different number
of CUDA streams in B&S, M1 and M2.

overall and 45.41% for IMG, the sub-program with the highest
priority. For VEC1 and VEC2, sub-programs with lower prior-
ity, KeSCo achieves a speedup of 1.22×, which is only 4.01%
lower than that of MPS. On MP-2, KeSCo achieves a speedup
of 1.13× for the whole workload, while MPS’s performance
drops by 5.21%. This is because MPS launches B&S, the sub-
program with the lowest priority, earlier than KeSCo does,
causing resource conflicts and performance penalties. For ML,
the sub-program with the highest priority, KeSCo achieves a
speedup of 1.14× while MPS causes a 4.95% performance
drop. In summary, MPS has the merit of transparent scheduling
at runtime but it lacks the ability to prioritize tasks from a
global perspective. KeSCo, on the other hand, is a compiler-
based approach that enables this global optimization, with the
help of user hints.
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Fig. 13: Speedup in two MPS programs.

V. RELATED WORK

A. Concurrent Kernel Execution

CKE has been studied in fine granularity widely. Elastic
kernel [1] slices kernels into multiple small ones and deploys
them on different SM to speed up. Similarly, OpenMP [21]
is leveraged to decompose kernels into multiple tasks in
Junggler [11] and schedule tasks with dependencies via run-
time mechanism. Also, Pagoda [22] concurrently executes
narrow tasks at warp-level by virtualizing GPU resources
and issues kernels when required resources are available.
Targeting at real-world applications, RAMMER [3] proposes a
DNN compiler for joint optimization of inter- and intra-kernel
concurrency. Taskflow[4] wraps GPU programming model
APIs and implements a static scheduler in the framework. A
GrCUDA [6]-based runtime scheduler [7] eases prototyping of
parallel applications. Distinguishing from those prior arts, our
proposed KeSCo aims to statically automate kernel scheduling



in multi-task programs, achieving much better performance
with reduced programming burden.

B. Task Scheduling

A bunch of task schedulers have been proposed to optimize
multi-task applications. On hardware level, new APIs are
introduced in [23] to heterogeneous system architecture (HSA)
for applications specifying task priority. Chimera [12] extends
SM scheduler to estimate the cost of kernel preemption to
minimize the overhead. Similarly, command buffer and status
table are further embedded in SM scheduler [13] to minimize
the overhead for prioritized tasks. On software level, FELP
[24] leverages a compiler-runtime system to control task
preemption at kernel level. EffiSha [10] schedules kernels at
thread-block level dynamically with an online cost model.
Pegasus [2] proposes a hypervisor that offers a virtualized
accelerator’s interface to schedule heterogeneous tasks coor-
dinately in virtual machines. CASE [25] introduces a novel
compiler-based approach for scheduling uncooperative tasks,
which is not applicable for the dependent task scheduling in
our scenario. While prior arts necessitate dedicated systems
for scheduling, KeSCo seamlessly integrates with compiler
and eases the use of task-level concurrency.

VI. CONCLUSION

The paper proposes KeSCo to automatically enable CKE
in multi-task applications at compile-time with trivial pro-
gramming effort. KeSCo constructs the DFG from source
code, distributes kernels across multiple streams, and generates
synchronization barriers to achieve load balance and low
synchronization cost. Moreover, the design is extended to
multi-process scenarios for prioritized sub-program schedul-
ing. Experimental results demonstrate that KeSCo effectively
boosts performance and eases programming burden.
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