< P Q 1>

Q|**I>** Pittsbui

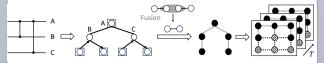
Pittsburgh Quantum Institute

www.pqi.org

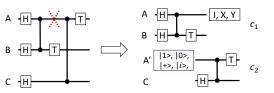
<PQ1>

FCM: A Fusion-aware Wire Cutting Approach for Measurement-based Quantum Computing Zewei Mo, Yingheng Li, Aditya Pawar, Xulong Tang, Jun Yang, Youtao Zhang

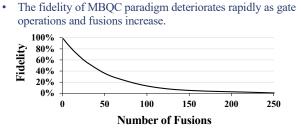
University of Pittsburgh

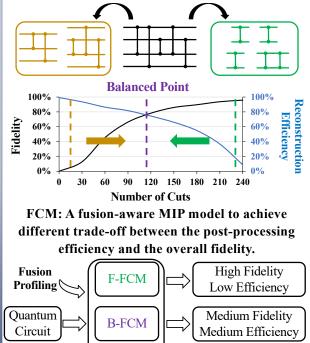

Introduction

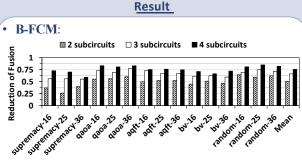
Motivation & Design


- MBQC carries out computation by one-way measurements on entangled photon qubits and highly error-prone quantum operations named fusion.
- Current compilation frameworks on MBQC result in too many fusions and low fidelity. While naïve wire cutting can decompose circuits, it fails to achieve the highest fidelity.
- We propose **FCM**, a Fusion-aware Cutting approach for MBQC. It uses mixed-integer programming (MIP) to achieve the balance between post-processing overhead and fidelity.
- FCM can reduce the maximum number of fusions of all subcircuits by **59.6%** on average (up to **69.1%**).

Background


• A standard compilation procedure of MBQC.


- The fusion is a native measurement operation in MBQC to connect graph states with a success rate of 75%.
- Wire cutting splits one circuit into two subcircuits, postprocessing is required to reconstruct the original result.


• Wire cutting improves fidelity with post-processing overhead, which increases with #cuts exponentially.

 Trade-off between fidelity and reconstruction efficiency is significant when applying wire cutting to reduce fusions.

T-FCM

• **F-FCM**: Reduces fusions up to **69.1%**, **85.5%**, and **90.7%** for k = 2, 3, and 4, respectively.

• **T-FCM**:

Benchmark	#Qubit	Reduction of #Cuts (#Subcircuits) under different thresholds T	
		1000	500
random	16	- (-)	7.1% (2)
	25	15.0% (2)	12.2% (3)
	36	14.3% (2)	11.6% (4)
qaoa	16	13.3% (2)	21.7% (3)
	25	11.1% (2)	19.2% (3)
	36	10.5% (2)	18.2% (4)

Conclusion

- 1. We reveal the potential opportunity of decomposing a circuit for fusion reduction through wire cutting.
- 2. We formulate the problem using MIP and optimize cutting decision under different settings.
- FCM can achieve effective trade-off between the overall fidelity and the post-processing overhead.

References

 Wei Tang et al. 2021. CutQC: using small Quantum computers for large Quantum circuit evaluations. In ASPLOS, 2021. 473– 486.

[2] Hezi Zhang et al. 2023. OneQ: A Compilation Framework for Photonic One-Way Quantum Computation. In ISCA, 2023. 12:1–12:14.

<P|Q|1>

Pittsburgh Quantum Institute

www.pqi.org

Tunable

Parameters

?|Q|I> Pitts

Acceptable Fidelity

High Efficiency

