
KeSCo: Compiler-based Kernel Scheduling
for Multi-task GPU Applications

Zejia Lin§†, Zewei Mo§‡, Xuanteng Huang†,
Xianwei Zhang#†, Yutong Lu†

§ Equal contribution
† Work done when studying at Sun Yat-sen University
Corresponding author

†Sun Yat-sen University, ‡University of Pittsburgh
Email: linzj39@mail2.sysu.edu.cn

2 / 42

Background

• GPU is mainly known for its data-level parallelism
q Thousands of cores, with thousands of outstanding threads
q Massively parallel computation

• Still need kernel-level parallelism
q GPU is underutilized by a single application process
q Executing independent kernels in parallel ⟹ Improve utilization

GPU Parallel Execution

CPU Issued Kernel Task A Task A Task B

Idle Idle Idle

3 / 42

Concurrent Kernel Execution (CKE)

• Techniques
q Vendor provided multi-process service (MPS)[1]

q Stream / Task queue in programming models

• Asynchronous queues in GPU programming models
q CUDA stream / graph[1]

q HIP stream / graph[2]

q SYCL command queue[3]

[1] https://docs.nvidia.com/deploy/mps/index.html

Credits: [1]
Dot(x, x) ReduceDot(y, y)

Dot(x, x) Reduce

Dot(y, y)

Serial

Concurrent

Stream #0

Time

Performance
Gain

60%

100%
Stream #1

Stream #2

4 / 42

Example: Transforming Serial Code into CKE

Image process pipeline Assign kernels to multiple streams
(software task queue)

5 / 42

Example: Transforming Serial Code into CKE (cont.)

Image process pipeline Pseudo serial code

First glance
• 11 kernels
• Massive dependency
• Error-prone refactoring
• ……

6 / 42

Example: Transforming Serial Code into CKE (cont.)

Image process pipeline Pseudo serial code

Non-trivial Efforts
• Dependence analysis

7 / 42

Example: Transforming Serial Code into CKE (cont.)

Image process pipeline Pseudo async code

Non-trivial Efforts
• Dependence analysis
• Scheduling
• Stream assignment

Stream ID

void Async_IMG(…) {
// create streams and events
blur(1, …);
blur(2, …);
sharp (3, …);

sobel (1, …);
sobel (2, …);

max (4, …);
min (2, …);

extend (2, …);
unsharpen (3, …);

combine (2, …);
combine (1, …);

}

8 / 42

void Async_IMG(…) {
// create streams and events
blur(1, …);
blur(2, …);
sharp (3, …);
······
cudaEventRecord(e1, 2);
cudaStreamWaitEvent(4, e1);
······
cudaEventRecord(e2, 4);
cudaStreamWaitEvent(2, e2);
······
cudaEventRecord(e3, 3);
cudaStreamWaitEvent(2, e3);
······
cudaEventRecord(e4, 2);
cudaStreamWaitEvent(1, e4);
combine (1, …);

}

Example: Transforming Serial Code into CKE (cont.)

Image process pipeline Pseudo async code

Non-trivial Efforts
• Dependence analysis
• Scheduling
• Stream assignment
• Synchronization
• ……

Synchronization
Events & Barriers

9 / 42

Tremendous Programming Burden

Hard to obtain bug-free and performant code

void Sync_IMG(…) {
blur(…);
blur(…);
sharp(…);
sobel(…);
sobel(…);
unsharpen(…);
max(…);
min(…);
extend(…);
combine(…);
combine(…);

}

2.8× LoC

Non-trivial Efforts
• Dependence analysis
• Scheduling
• Stream assignment
• Synchronization
• ……

void Async_IMG(…) {
// create streams and events
blur(1, …);
blur(2, …);
sharp (3, …);
······
cudaEventRecord(e1, 2);
cudaStreamWaitEvent(4, e1);
······
cudaEventRecord(e2, 4);
cudaStreamWaitEvent(2, e2);
······
cudaEventRecord(e3, 3);
cudaStreamWaitEvent(2, e3);
······
cudaEventRecord(e4, 2);
cudaStreamWaitEvent(1, e4);
combine (1, …);

}

10 / 42

Tremendous Programming Burden (cont.)

• Optimization
q When and where to issue kernel
q Efficient overlap with computation and data transfer
q

• Optimal scheduling improves performance, comes with
cumbersome manual efforts
q Understanding the code
q Identifying optimization opportunities
q Refactoring the code
q

[1] Nvidia. CUDA C++ Programming Guide
[2] AMD. HIP Runtime API Reference
[3] Khronos. SYCL 2020 Specification

11 / 42

Tremendous Programming Burden (cont.)

• Optimization
q When and where to issue kernel
q Efficient overlap with computation and data transfer
q

• Optimal scheduling improves performance, comes with
cumbersome manual efforts

[1] Nvidia. CUDA C++ Programming Guide
[2] AMD. HIP Runtime API Reference
[3] Khronos. SYCL 2020 Specification

Balance?

12 / 42

Observation Ⅰ: Regular Workflow Patterns

Wrap up vendor’s API to ease multi-tasking
• Taskflow[1] ⟹ cudaGraph + scheduler implemented in C++ wrapper API
• GrSched[2] ⟹ cudaStream + scheduler implemented in language VM

❶ Dependence analysis
❷ Assign kernel to stream

Similar workflow in implementing CKE

❸ Create synchronization barrier

[1] Tsung-Wei Huang et al. Taskflow: A lightweight parallel and heterogeneous task graph computing system. IEEE Transactions on Parallel and Distributed Systems
[2] Alberto Parravicini et al. Dag-based scheduling with resource sharing for multi-task applications in a polyglot GPU runtime. IPDPS 2021

13 / 42

Observation Ⅱ: Performance Downgrade

Runtime scheduling brings overhead

[1] Tsung-Wei Huang et al. Taskflow: A lightweight parallel and heterogeneous task graph computing system. IEEE Transactions on Parallel and Distributed Systems
[2] Alberto Parravicini et al. Dag-based scheduling with resource sharing for multi-task applications in a polyglot GPU runtime. IPDPS 2021

❶ Dependence analysis
❷ Assign kernel to stream

❸ Create synchronization barrier

❶ Dependence analysis ⟹ Runtime task graph construction
❷ Assign kernel to stream ⟹ Runtime schedule decision

❸ Create synchronization barrier ⟹ Also a part of task graph construction

Wrap up vendor’s API to ease multi-tasking
• Taskflow[1] ⟹ cudaGraph + scheduler implemented in C++ wrapper API
• GrSched[2] ⟹ cudaStream + scheduler implemented in language VM

14 / 42

Opportunity: Compiler for Automation

Schedule the execution at compile-time
• Automatic dependence analysis
• Compile-time scheduling
• Stream and synchronization management

Laborious work Runtime overhead

❶ Dependence analysis ⟹ Runtime task graph construction
❷ Assign kernel to stream ⟹ Runtime schedule decision

❸ Create synchronization barrier ⟹ Also a part of task graph construction

Use compiler to automate the workflow
with no runtime overhead

15 / 42

Challenges

Sheduling machanism
• How to acheive competent performance against manual-

optimized code?

Extensibility
• How to co-schedule independent tasks to share GPU?

Code transformation
• How is the design seamlessly integrated into existing compilation

workflow?

16 / 42

KeSCo Overview

KeSCo

Kernel-level Scheduler
Automatically analyze dependency, rearrange
kernels for higher overlap and less synchronization

Task-level Scheduler
Coordinates independent prioritized tasks, extends
the kernel-level scheduler to broader usage

Code

Compiler
Frontend

Optimizations

Compiler
Backend

Binary

17 / 42

KeSCo Overview (cont.)

• DFG (Data Flow Graph) Constructor: analyze kernel dependence
• Kernel Distributor: where the scheduling happens
• Synchronization Generator: guarantees correctness of the

asynchronous execution

18 / 42

Kernel-level Scheduling

Goal: ❶ Increase overlap ❷ Minimize synchronization ❸ Load balance
Key idea: Issue a kernel immediately after its predecessor whenever feasible

Data Flow Graph Scheduled Kernels

19 / 42

Goal: ❶ Increase overlap ❷ Minimize synchronization ❸ Load balance
Key idea: Issue a kernel immediately after its predecessor whenever feasible
Details
• Kernel with less predecessors is scheduled first
• Rearrangement from global perspective
• Remove redundant synchronization barrier
• ……

Kernel-level Scheduling (cont.)

20 / 42

Kernel-level Scheduling (cont.)

Goal: ❶ Increase overlap ❷ Minimize synchronization ❸ Load balance
Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel F has the least number of predecessors

Data Flow Graph Scheduled Kernels

F

F

21 / 42

Kernel-level Scheduling (cont.)

Goal: ❶ Increase overlap ❷ Minimize synchronization ❸ Load balance
Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel E can only be placed after kernel A

Data Flow Graph Scheduled Kernels

E

E

22 / 42

Kernel-level Scheduling (cont.)

Goal: ❶ Increase overlap ❷ Minimize synchronization ❸ Load balance
Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel D positioned in Stream 2 to overlaps with kernel E and F

Data Flow Graph Scheduled Kernels

D D

23 / 42

Kernel-level Scheduling (cont.)

Goal: ❶ Increase overlap ❷ Minimize synchronization ❸ Load balance
Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel H has the least number of predecessors

Data Flow Graph Scheduled Kernels

H

H

24 / 42

Kernel-level Scheduling (cont.)

Goal: ❶ Increase overlap ❷ Minimize synchronization ❸ Load balance
Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Rule applied similar to E

Data Flow Graph Scheduled Kernels

I

I

25 / 42

Kernel-level Scheduling (cont.)

Goal: ❶ Increase overlap ❷ Minimize synchronization ❸ Load balance
Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Rule applied similar to E

Data Flow Graph Scheduled Kernels

J J

26 / 42

Kernel-level Scheduling (cont.)

Goal: ❶ Increase overlap ❷ Minimize synchronization ❸ Load balance
Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel G has a redundant barrier

Data Flow Graph Scheduled Kernels

G G

27 / 42

Kernel-level Scheduling (cont.)

Goal: ❶ Increase overlap ❷ Minimize synchronization ❸ Load balance
Key idea: Issue a kernel immediately after its predecessor whenever feasible

Data Flow Graph Scheduled Kernels

28 / 42

KeSCo Overview

KeSCo

Kernel-level Scheduler
Automatically analyze dependency, rearrange
kernels for higher overlap and less synchronization

Task-level Scheduler
Coordinates independent prioritized tasks, extends
the kernel-level scheduler to broader usage

Code

Compiler
Frontend

Optimizations

Compiler
Backend

Binary

29 / 42

Multiple Workload Scheduling
compound_task(){
 task_A(1)
 task_B(2)
 task_C(2)

}Independent
Tasks

task_A(int priority){
 kernel_1<<<…>>>(…)
 kernel_2<<<…>>>(…)
 kernel_3<<<…>>>(…)

}

task_B(…){

}

task_C(…){

}

......

Inter-dependent
kernels

compound_task(){

}

task_A

task_B

task_C

A task is composed of
inter-dependent kernels

Independent tasks
are compounded

Essentially a larger
task graph

Extending the kernel-level scheduler to support multiple independent workloads
Key idea: Schedules hierarchically, postpone low-priority tasks

30 / 42

Multiple Workload Scheduling
compound_task(){

}

task_C

task_A

task_B

Hierarchical scheduling
1. Adopt kernel-level scheduling approach

independently for each zone
2. Demotes low-priority task
3. Remove redundant barriers and merge

streams

31 / 42

KeSCo Overview

KeSCo

Code

Clang
Frontend

Optimization
Middle-end

Code Gen
Backend

Binary

Kernel-level Scheduler
Automatically analyze dependency, rearrange
kernels for higher overlap and less synchronization

Task-level Scheduler
Coordinates independent prioritized tasks, extends
the kernel-level scheduler to broader usage

32 / 42

Compilation Pipeline Integration

KeSCo

Code

Clang
Frontend

Optimization
Middle-end

Code Gen
Backend

Binary

Portability: KeSCo targets CUDA, but can
easily port to other concurrent task queue-
supported frameworks

Impelemented as a set of compiler plugins
for code transformation

Vendor’s API
Insert	Invocation

Device

33 / 42

Compilation Pipeline Integration (cont.)

kernel_A<0>(...);
kernel_B<0>(...);
kernel_C<0>(...);

Denotes stream ID (pseudo code for simplicity)

Serial Code

kernel_A<0>(..., 1);
kernel_B<0>(..., 1);
kernel_C<0>(..., 1);

KeSCo
kernel_A<1>(...);
kernel_B<2>(...);
cudaEventRecord(e1, 2);
cudaStreamWaitEvent(2, e1);
kernel_C<1>(...);

CUDA Stream

ü Dependence analysis
ü Stream assignment
ü Synchronization management

__global__ void axpby(float *Y, int n, float alpha, float *X, float beta,
int outputs = 1, int priority = 1);

of writable parameters priority of the kernel (optional)

34 / 42

Experimental Setup

• Platform
§ GPU: Nvidia A100
§ CPU: AMD EPYC 7742
§ CUDA: 11.4.4
§ LLVM: 14.0.0

[1] Tsung-Wei Huang et al. Taskflow: A lightweight parallel and heterogeneous task graph computing system. IEEE Transactions on Parallel and Distributed Systems
[2] Alberto Parravicini et al. Dag-based scheduling with resource sharing for multi-task applications in a polyglot GPU runtime. IPDPS 2021
[3] NVIDIA. Multi-process service. https://docs.nvidia.com/deploy/mps/index.html

• Single process schemes
§ Sync: Serial execution
§ Async: Manual-opt. CUDA stream execution
§ Taskflow[1]: Programming model in C++
§ GrSched[2]: Dynamic scheduler in Python
§ KeSCo: Our compiler-based optimization

• Multi process schemes
§ Baseline: Launching all tasks simultaneously
§ Nvidia MPS[3]: Multi-process service
§ KeSCo: Our compiler-based optimization

• Workload[2]

35 / 42

Speedup w/o Data Prefetch

On average: Competitive performance against manual optimization
1.28× to Serial, 1.16× to Taskflow, 1.31× to GrSched

36 / 42

Speedup w/o Data Prefetch (cont.)

Memory occupation 1GB – 10GB
Robust against varying computational demand

37 / 42

Speedup w/ Data Prefetch

On average: Achieves 93% performance compared to manual optimization
5.01× to Serial, 1.32× to GrSched

38 / 42

Speedup in Multiple Independent Tasks

On average: 1.43× to Baseline (uncoordinated execution), 1.22× to MPS
§ Priority in decreasing order
§ MP-1: IMG + 2×VEC + HITS (~20GB mem.)
§ MP-2: ML + DL + B&S (~15GB mem.)

39 / 42

Programming Efforts

ü Automatic dependency analysis
ü Automatic concurrency management
üNo new programming framework

40 / 42

Conclusion

• Engineering burden and performance gap is observed in
implementing concurrent kernel execution with existing
programming models.

• We propose KeSCo, a compiler-based scheduler
Ø Expose kernel-level concurrency with trivial human efforts
Ø Low synchronization, load balance scheduling algorithm
Ø Extensible to multi-process scenario

• KeSCo outperforms the SOTAs with lessened programming efforts.

KeSCo: Compiler-based Kernel Scheduling
for Multi-task GPU Applications

Thank you

Zejia Lin§†, Zewei Mo§‡, Xuanteng Huang†, Xianwei Zhang#†, Yutong Lu†

†Sun Yat-sen University, ‡University of Pittsburgh
Email: linzj39@mail2.sysu.edu.cn

§ Equal contribution
† Work done when studying at Sun Yat-sen University
Corresponding author

