KeSCo: Compiler-based Kernel Scheduling
for Multi-task GPU Applications

Zejia Lin%", Zewei Mo%*, Xuanteng Huang",
Xianwei Zhang#', Yutong Lu®

tSun Yat-sen University, ¥University of Pittsburgh
Email: linzj39@mail2.sysu.edu.cn

©)fuxt ARGV Bitebireh

SUN YAT-SEN UNIVERSITY

§ Equal contribution
Tt Work done when studying at Sun Yat-sen University
Corresponding author

Background

* GPU is mainly known for its data-level parallelism
o Thousands of cores, with thousands of outstanding threads
o Massively parallel computation

* Still need kernel-level parallelism
o GPU is underutilized by a single application process
o Executing independent kernels in parallel = Improve utilization

Task A Task A Task B
CPU Issued Kernel ﬁ E 5
PU Parallel Ex ion 208220 | Rt 088328 233888 11 883538 [883335 (1 383333 ,j »,3
G U arafle eCUt o seeede || ¢oeedy PCTERL Idle Idle Idle teeede || oevey eeiee é“iw “5643 “»“{é

2/42

Concurrent Kernel Execution (CKE)

* Techniques ? ?
o Vendor provided multi-process service (MPS)!!]

CUD MULTI-PROCESS SERVICE CONTROL

CPU Processes

o Stream / Task queue in programming models GPU Execution

7 ~\
| VOLTA MULTI-PROCESS SERVICE |
\ J

* Asynchronous queues in GPU programming models
o CUDA stream / graph(]
a HIP stream / graph!?!
o SYCL command queuel3]

Volta GV100

(g J
Serial ;: Stream #0 | Dot(x, Xx) I Dot(y, y)]Réeduce]
- [Performance
Concurrent :I: Stream #1 | Dot (x, X)]Reduce EGam |
-llllll- Stream #2 L DOt(y, y)] <_’

Time
[1] https://docs.nvidia.com/deploy/mps/index.html ’ ’ 3 / 42

Example: Transforming Serial Code into CKE

Image process pipeline Assign kernels to multiple streams
. (software task queue)
put
¢ Y
Blur L | Blurs | | Sharp |
v v v Stream #1 Blur L Sobel L Combine
Sobel L | Sobel S | \Unsharp | i A
I + Stream #2 Blur S Sobel S Min Extend Combine
1 N 2™
| I Stream #3 Max Synchronization Barriers
Extend Stream #4 Sharp Unsharp
\ 4 Synchronization Barriers
Combine
Combine
v
Output

4/42

Example: Transforming Serial Code into CKE (cont.)

Image process pipeline

Input
¢ \ 4
Blur L | Blurs | | Sharp |
v
Sobel L | Sobel S | | Unsharp |
|
Eb .
Max
|
| Extend |
Y Synchronization Barriers
Combine
Combine
v
Output

Pseudo serial code

void Sync_IMG(..
blur(..);
blur(..);
sharp(..);
sobel(..);
sobel(..);
unsharpen(..
max(..);
min(..);
extend(..);
combine(..);
combine(..);

) 1

);

First glance

11 kernels
* Massive dependency
* Error-prone refactoring

5/42

Example: Transforming Serial Code into CKE (cont.)

Image process pipeline Pseudo serial code
Input
BIer | B|erS | | Sharp I void Sync_IMG(C ..) { . .
T i T ~blur(..); Non-trivial Efforts
Sobel L | Sobel S | |Unsharp| / bhur(- ;3 . .
. sharp(... J; * Dependence analysis
¥ sobel(..);
Efil Mex sobel(..);
I /" unsharpen(..);
Cmax(-)}
Extend minC ..);
| extend(..);
Y Synchronization Barriers combine(..);
Combine combine(..);
— ks
Combine
v
Output

6/42

Example: Transforming Serial Code into CKE (cont.)

Image process pipeline Pseudo async code
Input void Async IMG(..) {
¢ // create streams and events

v blur()5
s | s | S | blur(2* Stream ID Non-trivial Efforts
sharp (3, ..);

Sobel L | Sobel S | |Unsharp| .
. * Dependence analysis

v sobel (1, ..);)
Efil Wax sobel (2, ..); * Scheduling

* Stream assignment

max (4, ..);
min (2, ..);

\ 4 Synchronization Barriers
el extend (2, ..);
. unsharpen (3, ..);

Cdmbine
v combine (2, ..);
combine (1, ..);

Extend

Output

7/42

Example: Transforming Serial Code into CKE (cont.)

Image process pipeline Pseudo async code
Input void Async IMG(..) {
o e e
Blur L Blur S Sharp Synchronization o e
T i T povseassndsil Non-trivial Efforts
Sobel L Sobel S Unsharp .
| . | l \ * Dependence analysis
v cudaEventRecord(el, 2); e Scheduli
fo H cudaStreamWaitEvent (4, el); cheduling
* Stream assignment
Extend cudakventRecord(e2, 4), . .
= cudaStreamWaitEvent (2, e2); * SynChromzatlon
Y Synchronization Barriers * ...
Combine cudaEventRecord(e3, 3);
v cudaStreamWaitEvent (2, e3);
‘Combine
¢ cudaEventRecord(e4, 2);
o cudaStreamWaitEvent (1, e4);
utput

} 8/42

Tremendous Programming Burden

Hard to obtain bug-free and performant code

Non-trivial Efforts

* Dependence analysis
2.8x LoC e Scheduling

— * Stream assignment

e Synchronization

9/42

Tremendous Programming Burden (cont.)

* Optimization
o When and where to issue kernel
o Efficient overlap with computation and data transfer

* Optimal scheduling improves performance, comes with
cumbersome manual efforts
o Understanding the code
o Identifying optimization opportunities
o Refactoring the code

[1] Nvidia. CUDA C++ Programming Guide
[2] AMD. HIP Runtime API Reference
[3] Khronos. SYCL 2020 Specification 10 / 42

Tremendous Programming Burden (cont.)

* Optimization
o When and where to issue kernel
o Efficient overlap with computation and data transfer

* Optimal scheduling improves performance, comes with
cumbersome manual efforts

Balance?

[1] Nvidia. CUDA C++ Programming Guide
[2] AMD. HIP Runtime API Reference
[3] Khronos. SYCL 2020 Specification 11/42

Observation I: Regular Workflow Patterns

Wrap up vendor’s APl to ease multi-tasking

» Taskflow!ll = cudaGraph +
e GrSched?l = cudaStream +

Similar workflow in implementing CKE

0 Dependence analysis

[Taskflow
Q Assign kernel to stream E= GrSched
L _ B Async
© cCreate synchronization barrier - 15
c i
TR
£
D .5
Stream #1 Blur L Sobel L Combine 3 10 i
""" £]
Stream #2 Blur S | | Sobel S | |Min| |Extend| |Combine| c 5_—
--- g *
Stream #3 Max Synchronization Barriers |2 _
""" # 0-
Stream #4 Sharp | | Unsharp | B&S M1 M2

Benchmark

[1] Tsung-Wei Huang et al. Taskflow: A lightweight parallel and heterogeneous task graph computing system. IEEE Transactions on Parallel and Distributed Systems

[2] Alberto Parravicini et al. Dag-based scheduling with resource sharing for multi-task applications in a polyglot GPU runtime. IPDPS 2021

12 /42

Observation II: Performance Downgrade

Wrap up vendor’s APl to ease multi-tasking

¢ Taskflow!ll = + scheduler implemented in C++ wrapper API
* GrSchedld = + scheduler implemented in language VM

Runtime scheduling brings overhead

€ Dependence analysis — Runtime task graph construction
€ Assign kernel to stream — Runtime schedule decision
€ Crcate synchronization barrier = Also a part of task graph construction
[Taskflow —x—BE= GrSched —s— @A Async
o F B3s M W2 C End to End
] ar N - N w ~ Avg. Speedu
QL s [l'. \I'-’. 30X, =L o l’.’. - 2.08
R R o == | e o, o N | (il 2.54
T Vb e PP o e e e
N 1 ZE.,-gx(_______ r.‘!,.x __________ rlx.f __________ [
; . -
[O]

Kernels Scheme

[1] Tsung-Wei Huang et al. Taskflow: A lightweight parallel and heterogeneous task graph computing system. IEEE Transactions on Parallel and Distributed Systems
[2] Alberto Parravicini et al. Dag-based scheduling with resource sharing for multi-task applications in a polyglot GPU runtime. IPDPS 2021

13 /42

Opportunity: Compiler for Automation

Schedule the execution at compile-time

* Automatic dependence analysis
 Compile-time scheduling
e Stream and synchronization management

000
Il

U

\ £ \ £

Laborious work Runtime overhead

/S

Use compiler to automate the workflow
with no runtime overhead

Challenges

Sheduling machanism

* How to acheive competent performance against manual-
optimized code?

Extensibility
* How to co-schedule independent tasks to share GPU?

Code transformation

* How is the design seamlessly integrated into existing compilation
workflow?

15/42

KeSCo Overview

Kernel-level Scheduler

Automatically analyze dependency, rearrange
kernels for higher overlap and less synchronization

KeSCo

Task-level Scheduler

Coordinates independent prioritized tasks, extends
the kernel-level scheduler to broader usage

16 /42

KeSCo Overview (cont.)

* DFG (Data Flow Graph) Constructor: analyze kernel dependence

* Kernel Distributor: where the scheduling happens

* Synchronization Generator: guarantees correctness of the

asynchronous execution

Assign Kernels

2. Kernel to Streams I @ @
Distributor

¢ Create Event

> ‘3. Synchronization] & Barrier
; Generator —

ldentify Data
Source 1. DFG Dependence
Code Constructor ﬁ

=3

® O 6

B

17 /42

Kernel-level Scheduling

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Data Flow Graph Scheduled Kernels

Numbers are their
scheduling order in
the kernel distributor

Gonerated)

Generated

Barrier
— >

Level 1

Level 2

Removed
Barrier

-
18/ 42

Level 3

Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance
Key idea: Issue a kernel immediately after its predecessor whenever feasible

ing fOf
d ernel SCT“EG““
Compiler D0 Applicatio™
K pre
T S e

. 3
KeSCO: -9
L

o BT

et
o irtPtor

Details
Kernel with less predecessors is scheduled first

Rearrangement from global perspective
Remove redundant synchronization barrier

®

ey ot) D
e DR Wi
g 4 sy,

——
S St

Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel F has the least number of predecessors
Data Flow Graph Scheduled Kernels

Numbers are their
Stream 1 scheduling order in

the kernel distributor

Generated
Stream 2 Barrier
—_—

Removed

Barrier
St 3
ream @ @ \ & o w e

20/ 42

Level 1 k

Level 2

Level 3

Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel E can only be placed after kernel A
Data Flow Graph Scheduled Kernels

Numbers are their
Stream 1 scheduling order in

the kernel distributor

) Generated
> Stream 2 Barrier
, —

Removed

Barrier
St 3

21/42

Level 1 k

Level 2

Level 3

Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel D positioned in Stream 2 to overlaps with kernel E and F

Level 1 k

Level 2

Data Flow Graph Scheduled Kernels

Stream 1 @ @
> Stream 2 Q

Level 3

Stream 3 @ @

Numbers are their
scheduling order in
the kernel distributor

Generated

Barrier
>

Removed
Barrier

N

22 /42

Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel H has the least number of predecessors

Level 2

Level 3

Data Flow Graph

Level 1 k%

Y,

G

Scheduled Kernels

Stream 1 @ @

) e ® O @

Stream 3 @ @

Numbers are their
scheduling order in
the kernel distributor

Generated

Barrier
>

Removed
Barrier

N

23 /42

Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Rule applied similar to E

Data Flow Graph Scheduled Kernels

- 08 €
Level 2 > Stream 2 @ @

Level 3 m Stream 3 @ @

Numbers are their
scheduling order in
the kernel distributor

Generated

Barrier
>

Removed
Barrier

N

24 /42

Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Rule applied similar to E

Data Flow Graph Scheduled Kernels

,, \ Numbers are their
Level 1 k | Stream 1 @ @ @ scheduling order in
' the kernel distributor
' Generated
> Stream 2 @ @ Barrier
, —_—

Removed

St 3 o Barrier
wms @) ()

25 /42

Level 2

Level 3

Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel G has a redundant barrier

Data Flow Graph Scheduled Kernels
,, \ Numbers are their
Level 1 k | Stream 1 scheduling order in
' the kernel distributor
' Generated
Level 2 > Stream 2 @ @ Barrier
, e
Removed
@ @ OOC

Barrier

N

26 /42

Level 3

Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Data Flow Graph Scheduled Kernels

Numbers are their
scheduling order in
the kernel distributor

Gonerated)

Generated

Barrier
— >

Level 1

Level 2

Removed
Barrier

-
27/ 42

Level 3

KeSCo Overview

KeSCo

Task-level Scheduler

Coordinates independent prioritized tasks, extends
the kernel-level scheduler to broader usage

28 /42

Multiple Workload Scheduling

task_A(int priority){ compound_task(){ compound_task(){
<:<ernel_1<<<...>>>(...) task A(1) f ™) R
Inter-dependent kernel 2<<<..>>>(..) - task_B(2) ‘ ?
kernqls kernel 3<<<..>>>(..) task _C(2) \task_A © J
s R B (0JOJOXO)
|ndependent / task B(..){ } 7 \task_B 9)
Tasks L (O @
\ task_C(.){ ORO
R task_c '@)
'—7 oooooo
......)
7 7
A task is composed of Independent tasks Essentially a larger
inter-dependent kernels are compounded task graph

Extending the kernel-level scheduler to support multiple independent workloads
Key idea: Schedules hierarchically, postpone low-priority tasks

29 /42

Multiple Workload Scheduling

Merged Streams

o

=
®

\© @

@00

.

Hierarchical scheduling

1. Adopt kernel-level scheduling approach
independently for each zone

2. Demotes low-priority task

3. Remove redundant barriers and merge
streams

Stream Zones

&©
/©

el
]

@
@

oy s
'

—

Original DFG

Stream Zones Prior'ity @ @
- e - B

e

30/42

KeSCo Overview

Code a
Clang o
Frontend o
Optimization SC
Middle-end Ke 0

Code Gen

v
Backend ‘—I

Binary @

31/42

Compilation Pipeline Integration

Impelemented as a set of compiler plugins

Code a .
! for code transformation
Clang OO Light-weight p N
Frontend Code Modification LLVM s KeSCo N
Optimization e 1 - L 4 [DI Constructor
 program 1 ; GPU Cod —— /
Middle-end KeSCO . Source OCe ‘) Kernel) BIN
: » Fatbin ' Stream . »)
__________ Code ' Distributor |
! Sub- ! Host Zone | —— 7
: L (CPU) IR e . [Synchromzatlon
Code Gen v V. - o L Generator)
Backend |_| \ y
Insert Invocation ¥
Por?ablllty: KeSCo targets CUDA, but can Vendor’s API Q
Binary ‘ 3 easily port to other concurrent task queue-
supported frameworks |

1
Device |R2@2

32/42

Compilation Pipeline Integration (cont.)

(&) B
©

Serial Code

kernel A<0>(...);
kernel B<0>(...);
kernel_C<?>(...)3

v’ Dependence analysis

v’ Stream assignment

v’ Synchronization management

KeSCo

kernel A<0>(..., 1);
kernel B<O>(..., 1);
kernel C<0>(..., 1);

Denotes stream ID (pseudo code for simplicity)

CUDA Stream

kernel A<1>(...);

kernel B<2>(...);
cudaEventRecord(el, 2);
cudaStreamWaitEvent(2, el);
kernel C<1>(...);

__global void axpby(float *Y, int n, float alpha, float *X, float beta,

of writable parameters

T

int outputs = 1, int priority = 1);

priority of the kernel (optional)

33/42

Experimental Setup

* Platform e Workload!2]

= GPU: Nvidia A100

Name Notation Domain Max DFG Width
= CPU: AMD EPYC 7742 Micro-1 M1 AL p
= CUDA:11.4.4 Micro-2 M2 Al 12
= LLVM: 14.0.0 Vector Square VEC HPC 2
Black & Scholes B&S HPC 10
Image Processing IMG HPC 3
. Machine Learning ML Al 2
* Single process schemes oS HITS - HEC 2
eep Learning

= Sync: Serial execution

= Async: Manual-opt. CUDA stream execution
= Taskflowl!: Programming model in C++

= GrSched: Dynamic scheduler in Python

= KeSCo: Our compiler-based optimization

®* Multi process schemes

= Baseline: Launching all tasks simultaneously
= Nvidia MPSEBl: Multi-process service

= KeSCo: Our compiler-based optimization

[1] Tsung-Wei Huang et al. Taskflow: A lightweight parallel and heterogeneous task graph computing system. IEEE Transactions on Parallel and Distributed Systems
[2] Alberto Parravicini et al. Dag-based scheduling with resource sharing for multi-task applications in a polyglot GPU runtime. IPDPS 2021
[3] NVIDIA. Multi-process service. https://docs.nvidia.com/deploy/mps/index.html

34/ 42

Speedup w/o Data Prefetch

On average: Competitive performance against manual optimization

1.28x to Serial, 1.16x to Taskflow, 1.31x to GrSched

2.00-

E==]Serial

VEC

B&S

[Taskflow

ML

E=GrSched

22 Async

|

HITS IMG DL

Benchmark

Il KeSCo

M1

M2

Mean

35/42

Speedup w/o Data Prefetch (cont.)

Memory occupation 1GB — 10GB
Robust against varying computational demand

o5 VEC B&S ML
2l el
8 1 __.‘Z_?;g = _,’."_‘ng‘_—_‘g‘. == ____‘,__.‘-—-—_0:1’. — _-.'&58'9!8"’8"!8"&-—’*}
o .]
NO-——T—T T T T T T T T T T T T T T T T T T 1
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
1e8 1e7 1e6
22- HITS i IMG i DL
Q Jp—p————< 1" T—v .
o ~¢ |]
NOT——T—T T T T T T T T T T T T T T T T T T 1
2 4 6 8 101214 4 6 8 10 12 14 16 9 11 13 15 17 19 21
o, M1 1e7 M2 1e3 Input Size 1e3
S g | | ¥ R—R—R—— Taskflow
O 47 o —a—a—s|1¢ —— 0
8 1 '_'::0'—“’—"'1""" =4 '_""' """""" —4&— GrSched
o] ——
NO-T—T—T T T T T T T T T T T ®— Async
2 3 4 5 6 7 8 4 6 8 10 12 14 16 —x— KeSCo
Input Size 1e7 Input Size 1e7 36/ 42

Speedup w/ Data Prefetch

On average: Achieves 93% performance compared to manual optimization
5.01x to Serial, 1.32x to GrSched

Serial BE== GrSched

EZZ Async HHE KeSCo

(@)

5.35¢)1

Speedup
1 |ﬁ3|| |ﬁ>|| M|

o

Benchmark

37/42

Speedup in Multiple Independent Tasks

On average: 1.43x to Baseline (uncoordinated execution), 1.22x to MPS
= Priority in decreasing order

= MP-1: IMG + 2xVEC + HITS (¥20GB mem.)

= MP-2: ML + DL + B&S (¥15GB mem.)

4 - Baseline - 7
o - MPS - /
8] Il KeSCo - Z
2]
e : Z S8 =
N A . i.o‘_
0= —

ML DL B&S All
Benchmark Benchmark

38/42

Programming Efforts

v’ Automatic dependency analysis
v’ Automatic concurrency management
v No new programming framework

Scheme LoC #Tokens D.A* CM.® NPF PL¢
Serial 86 378 X X v C++
Async 106 483 X X v C++
Taskflow 173 914 X v X C++
GrSched 366 1832 v v X Python
KeSCo 88 401 v v v C++

* Automatic Dependency Analysis

® Automatic Concurrency Management
® No New Programming Framework

4 Programming Language

39/42

Conclusion

* Engineering burden and performance gap is observed in
implementing concurrent kernel execution with existing
programming models.

* We propose KeSCo, a compiler-based scheduler

» Expose kernel-level concurrency with trivial human efforts
» Low synchronization, load balance scheduling algorithm
» Extensible to multi-process scenario

* KeSCo outperforms the SOTAs with lessened programming efforts.

40/ 42

Thank you

KeSCo: Compiler-based Kernel Scheduling
for Multi-task GPU Applications

Zejia Lin%", Zewei Mo%*, Xuanteng Huang', Xianwei Zhang®', Yutong Lu’

tSun Yat-sen University, ¥University of Pittsburgh
Email: linzj39@mail2.sysu.edu.cn

fukx % AR(YSU et

SUN YAT-SEN UNIVERSITY

§ Equal contribution
Tt Work done when studying at Sun Yat-sen University
Corresponding author

