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Background

* GPU is mainly known for its data-level parallelism
o Thousands of cores, with thousands of outstanding threads
o Massively parallel computation

* Still need kernel-level parallelism
o GPU is underutilized by a single application process
o Executing independent kernels in parallel = Improve utilization
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Concurrent Kernel Execution (CKE)

* Techniques ? ?
o Vendor provided multi-process service (MPS)!!]

CUD MULTI-PROCESS SERVICE CONTROL

CPU Processes

o Stream / Task queue in programming models GPU Execution

7 ~\
| VOLTA MULTI-PROCESS SERVICE |
\ J

* Asynchronous queues in GPU programming models
o CUDA stream / graph(]
a HIP stream / graph!?!
o SYCL command queuel3]

Volta GV100

(g J
Serial ;: Stream #0 | Dot(x, Xx) I Dot(y, y) ]Réeduce]
- [ Performance
Concurrent :I: Stream #1 | Dot (x, X) ]Reduce EGam |
-llllll- Stream #2 L DOt(y, y) ] <_’

Time
[1] https://docs.nvidia.com/deploy/mps/index.html ’ ’ 3 / 42




Example: Transforming Serial Code into CKE

Image process pipeline Assign kernels to multiple streams
. (software task queue)
put
¢ Y
Blur L | Blurs | | Sharp |
v v v Stream #1 Blur L Sobel L Combine
Sobel L | Sobel S | \Unsharp | i A
I + Stream #2 Blur S Sobel S Min Extend Combine
1 N 2™
| I Stream #3 Max Synchronization Barriers
Extend Stream #4 Sharp Unsharp
\ 4 Synchronization Barriers
Combine
Combine
v
Output
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Example: Transforming Serial Code into CKE (cont.)

Image process pipeline

Input
¢ \ 4
Blur L | Blurs | | Sharp |
v
Sobel L | Sobel S | | Unsharp |
|
Eb .
Max
|
| Extend |
Y Synchronization Barriers
Combine
Combine
v
Output

Pseudo serial code

void Sync_IMG( ..
blur( .. );
blur( .. );
sharp( .. );
sobel( .. );
sobel( .. );
unsharpen( ..
max( .. );
min( .. );
extend( .. );
combine( .. );
combine( .. );

) 1

);

First glance

11 kernels
* Massive dependency
* Error-prone refactoring
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Example: Transforming Serial Code into CKE (cont.)

Image process pipeline Pseudo serial code
Input
BIer | B|erS | | Sharp I void Sync_IMG(C .. ) { . .
T i T ~blur( .. ); Non-trivial Efforts
Sobel L | Sobel S | |Unsharp| / bhur( - ;3 . .
. sharp( ... J; * Dependence analysis
¥ sobel( .. );
Efil Mex sobel( .. );
I /" unsharpen( .. );
Cmax( - )}
Extend minC .. );
| extend( .. );
Y Synchronization Barriers combine( .. );
Combine combine( .. );
— ks
Combine
v
Output
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Example: Transforming Serial Code into CKE (cont.)

Image process pipeline Pseudo async code
Input void Async IMG( .. ) {
¢ // create streams and events

v blur( )5
s | s | S | blur( 2* Stream ID Non-trivial Efforts
sharp ( 3, .. );

Sobel L | Sobel S | |Unsharp| .
. * Dependence analysis

v sobel (1, .. ); )
Efil Wax sobel ( 2, .. ); * Scheduling

* Stream assignment

max ( 4, .. );
min ( 2, .. );

\ 4 Synchronization Barriers
el extend ( 2, .. );
. unsharpen ( 3, .. );

Cdmbine
v combine ( 2, .. );
combine ( 1, .. );

Extend

Output
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Example: Transforming Serial Code into CKE (cont.)

Image process pipeline Pseudo async code
Input void Async IMG( .. ) {
o e e
Blur L Blur S Sharp Synchronization o e
T i T povseassndsil Non-trivial Efforts
Sobel L Sobel S Unsharp .
| . | l \ * Dependence analysis
v cudaEventRecord(el, 2); e Scheduli
fo H cudaStreamWaitEvent (4, el); cheduling
* Stream assignment
Extend cudakventRecord(e2, 4), . .
= cudaStreamWaitEvent (2, e2); * SynChromzatlon
Y Synchronization Barriers * ...
Combine cudaEventRecord(e3, 3);
v cudaStreamWaitEvent (2, e3);
‘Combine
¢ cudaEventRecord(e4, 2);
o cudaStreamWaitEvent (1, e4);
utput
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Tremendous Programming Burden

Hard to obtain bug-free and performant code

Non-trivial Efforts

* Dependence analysis
2.8x LoC e Scheduling

— * Stream assignment

e Synchronization
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Tremendous Programming Burden (cont.)

* Optimization
o When and where to issue kernel
o Efficient overlap with computation and data transfer

* Optimal scheduling improves performance, comes with
cumbersome manual efforts
o Understanding the code
o Identifying optimization opportunities
o Refactoring the code

[1] Nvidia. CUDA C++ Programming Guide
[2] AMD. HIP Runtime API Reference
[3] Khronos. SYCL 2020 Specification 10 / 42



Tremendous Programming Burden (cont.)

* Optimization
o When and where to issue kernel
o Efficient overlap with computation and data transfer

* Optimal scheduling improves performance, comes with
cumbersome manual efforts

Balance?

[1] Nvidia. CUDA C++ Programming Guide
[2] AMD. HIP Runtime API Reference
[3] Khronos. SYCL 2020 Specification 11/42



Observation I: Regular Workflow Patterns

Wrap up vendor’s APl to ease multi-tasking

» Taskflow!ll = cudaGraph +
e GrSched?l = cudaStream +

Similar workflow in implementing CKE

0 Dependence analysis

[ Taskflow
Q Assign kernel to stream E= GrSched
L _ B Async
© cCreate synchronization barrier - 15
c i
TR
£
D .5
Stream #1 Blur L Sobel L Combine 3 10 i
""""""""""""""""""""""""""""""""""""""""" £ ]
Stream #2 Blur S | | Sobel S | |Min| |Extend| |Combine| c 5_—
--------------------------------------------------------------------------- g *
Stream #3 Max Synchronization Barriers |2 _
""""""""""""""""""""""""""""""""""""""""" # 0-
Stream #4 Sharp | | Unsharp | B&S M1 M2

Benchmark

[1] Tsung-Wei Huang et al. Taskflow: A lightweight parallel and heterogeneous task graph computing system. IEEE Transactions on Parallel and Distributed Systems

[2] Alberto Parravicini et al. Dag-based scheduling with resource sharing for multi-task applications in a polyglot GPU runtime. IPDPS 2021
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Observation II: Performance Downgrade

Wrap up vendor’s APl to ease multi-tasking

¢ Taskflow!ll = + scheduler implemented in C++ wrapper API
* GrSchedld = + scheduler implemented in language VM

Runtime scheduling brings overhead

€ Dependence analysis — Runtime task graph construction
€ Assign kernel to stream — Runtime schedule decision
€ Crcate synchronization barrier = Also a part of task graph construction
[ Taskflow —x—BE= GrSched —s— @A Async
o F B3s M W2 C End to End
] ar N - N w ~ Avg. Speedu
QL s [ l'. \I'-’. 30X, =L o l’.’. - 2.08
R R o == | e o, o N | (il 2.54
T Vb e PP o e e e
N 1 ZE.,-gx( _______ r.‘!,.x __________ rlx.f __________ [
; . -
[ O ]

Kernels Scheme

[1] Tsung-Wei Huang et al. Taskflow: A lightweight parallel and heterogeneous task graph computing system. IEEE Transactions on Parallel and Distributed Systems
[2] Alberto Parravicini et al. Dag-based scheduling with resource sharing for multi-task applications in a polyglot GPU runtime. IPDPS 2021

13 /42



Opportunity: Compiler for Automation

Schedule the execution at compile-time

* Automatic dependence analysis
 Compile-time scheduling
e Stream and synchronization management

000
Il

U

\ £ \ £

Laborious work Runtime overhead

/S

Use compiler to automate the workflow
with no runtime overhead



Challenges

Sheduling machanism

* How to acheive competent performance against manual-
optimized code?

Extensibility
* How to co-schedule independent tasks to share GPU?

Code transformation

* How is the design seamlessly integrated into existing compilation
workflow?

15/42



KeSCo Overview

Kernel-level Scheduler

Automatically analyze dependency, rearrange
kernels for higher overlap and less synchronization

KeSCo

Task-level Scheduler

Coordinates independent prioritized tasks, extends
the kernel-level scheduler to broader usage

16 /42



KeSCo Overview (cont.)

* DFG (Data Flow Graph) Constructor: analyze kernel dependence

* Kernel Distributor: where the scheduling happens

* Synchronization Generator: guarantees correctness of the

asynchronous execution

Assign Kernels

2. Kernel to Streams I @ @
Distributor

¢ Create Event

> ‘3. Synchronization] & Barrier
; Generator —

ldentify Data
Source 1. DFG Dependence
Code Constructor ﬁ

=3

® O 6

B
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Kernel-level Scheduling

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Data Flow Graph Scheduled Kernels

Numbers are their
scheduling order in
the kernel distributor

Gonerated)

Generated

Barrier
— >

Level 1

Level 2

Removed
Barrier

-
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Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance
Key idea: Issue a kernel immediately after its predecessor whenever feasible

ing fOf
d ernel SCT“EG““
Compiler D0 Applicatio™
K pre
T S e

. 3
KeSCO: -9
L

o BT

et
o irtPtor

Details
Kernel with less predecessors is scheduled first

Rearrangement from global perspective
Remove redundant synchronization barrier

®

ey ot ) D
e DR Wi
g 4 sy,

——
S St




Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel F has the least number of predecessors
Data Flow Graph Scheduled Kernels

Numbers are their
Stream 1 scheduling order in

the kernel distributor

Generated
Stream 2 Barrier
—_—

Removed

Barrier
St 3
ream @ @ \ & o w e

20/ 42

Level 1 k

Level 2

Level 3



Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel E can only be placed after kernel A
Data Flow Graph Scheduled Kernels

Numbers are their
Stream 1 scheduling order in

the kernel distributor

) Generated
> Stream 2 Barrier
, —

Removed

Barrier
St 3
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Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel D positioned in Stream 2 to overlaps with kernel E and F

Level 1 k

Level 2

Data Flow Graph Scheduled Kernels

Stream 1 @ @
> Stream 2 Q

Level 3

Stream 3 @ @

Numbers are their
scheduling order in
the kernel distributor

Generated

Barrier
>

Removed
Barrier

N
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Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel H has the least number of predecessors

Level 2

Level 3

Data Flow Graph

Level 1 k%

Y,

G

Scheduled Kernels

Stream 1 @ @

) e ® O @

Stream 3 @ @

Numbers are their
scheduling order in
the kernel distributor

Generated

Barrier
>

Removed
Barrier

N
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Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Rule applied similar to E

Data Flow Graph Scheduled Kernels

- 08 €
Level 2 > Stream 2 @ @

Level 3 m Stream 3 @ @

Numbers are their
scheduling order in
the kernel distributor

Generated

Barrier
>

Removed
Barrier

N
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Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Rule applied similar to E

Data Flow Graph Scheduled Kernels

,, \ Numbers are their
Level 1 k | Stream 1 @ @ @ scheduling order in
' the kernel distributor
' Generated
> Stream 2 @ @ Barrier
, —_—

Removed

St 3 o Barrier
wms @) ()
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Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Procedure: Kernel G has a redundant barrier

Data Flow Graph Scheduled Kernels
,, \ Numbers are their
Level 1 k | Stream 1 scheduling order in
' the kernel distributor
' Generated
Level 2 > Stream 2 @ @ Barrier
, e
Removed
@ @ OOC

Barrier

N
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Kernel-level Scheduling (cont.)

Goal: @ Increase overlap @ Minimize synchronization € Load balance

Key idea: Issue a kernel immediately after its predecessor whenever feasible

Data Flow Graph Scheduled Kernels

Numbers are their
scheduling order in
the kernel distributor

Gonerated)

Generated

Barrier
— >

Level 1

Level 2

Removed
Barrier

-
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KeSCo Overview

KeSCo

Task-level Scheduler

Coordinates independent prioritized tasks, extends
the kernel-level scheduler to broader usage
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Multiple Workload Scheduling

task_A(int priority){ compound_task(){ compound_task(){
<:<ernel_1<<<...>>>(...) task A(1) f ™ ) R
Inter-dependent kernel 2<<<..>>>(..) - task_B(2) ‘ ?
kernqls kernel 3<<<..>>>(..) task _C(2) \task_A © J
s R B ( 0JOJOXO)
|ndependent / task B(..){ } 7 \task_B 9 )
Tasks L ( O @
\ task_C(.){ ORO
R task_c '@ )
'—7 oooooo
...... )
7 7
A task is composed of Independent tasks Essentially a larger
inter-dependent kernels are compounded task graph

Extending the kernel-level scheduler to support multiple independent workloads
Key idea: Schedules hierarchically, postpone low-priority tasks
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Multiple Workload Scheduling

Merged Streams

o

=
®

\© @

@00

.

Hierarchical scheduling

1. Adopt kernel-level scheduling approach
independently for each zone

2. Demotes low-priority task

3. Remove redundant barriers and merge
streams

Stream Zones

&©
/©

el
]

@
@

oy s
'

—

Original DFG

Stream Zones Prior'ity @ @
- e - B

e
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KeSCo Overview

Code a
Clang o
Frontend o
Optimization SC
Middle-end Ke 0

Code Gen

v
Backend ‘—I

Binary @
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Compilation Pipeline Integration

Impelemented as a set of compiler plugins

Code a .
! for code transformation
Clang OO Light-weight p N
Frontend Code Modification LLVM s KeSCo N
Optimization e 1 - L 4 [ DI Constructor
 program 1 ; GPU Cod —— /
Middle-end KeSCO . Source OCe ‘ ) Kernel ) BIN
: » Fatbin ' Stream . » )
__________ Code ' Distributor |
! Sub- ! Host Zone | —— 7
: L (CPU) IR e . [Synchromzatlon
Code Gen v V. - o L Generator )
Backend |_| \ y
Insert Invocation ¥
Por?ablllty: KeSCo targets CUDA, but can Vendor’s API Q
Binary ‘ 3 easily port to other concurrent task queue-
supported frameworks |

1
Device |R2@2
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Compilation Pipeline Integration (cont.)

(&) B
©

Serial Code

kernel A<0>(...);
kernel B<0>(...);
kernel_C<?>(...)3

v’ Dependence analysis

v’ Stream assignment

v’ Synchronization management

KeSCo

kernel A<0>(..., 1);
kernel B<O>(..., 1);
kernel C<0>(..., 1);

Denotes stream ID (pseudo code for simplicity)

CUDA Stream

kernel A<1>(...);

kernel B<2>(...);
cudaEventRecord(el, 2);
cudaStreamWaitEvent(2, el);
kernel C<1>(...);

__global  void axpby(float *Y, int n, float alpha, float *X, float beta,

# of writable parameters

T

int outputs = 1, int priority = 1);

priority of the kernel (optional)
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Experimental Setup

* Platform e Workload!2]

= GPU: Nvidia A100

Name Notation Domain Max DFG Width
= CPU: AMD EPYC 7742 Micro-1 M1 AL p
= CUDA:11.4.4 Micro-2 M2 Al 12
= LLVM: 14.0.0 Vector Square VEC HPC 2
Black & Scholes B&S HPC 10
Image Processing IMG HPC 3
. Machine Learning ML Al 2
* Single process schemes oS HITS - HEC 2
eep Learning

= Sync: Serial execution

= Async: Manual-opt. CUDA stream execution
=  Taskflowl!: Programming model in C++

=  GrSched: Dynamic scheduler in Python

= KeSCo: Our compiler-based optimization

®* Multi process schemes

=  Baseline: Launching all tasks simultaneously
= Nvidia MPSEBl: Multi-process service

= KeSCo: Our compiler-based optimization

[1] Tsung-Wei Huang et al. Taskflow: A lightweight parallel and heterogeneous task graph computing system. IEEE Transactions on Parallel and Distributed Systems
[2] Alberto Parravicini et al. Dag-based scheduling with resource sharing for multi-task applications in a polyglot GPU runtime. IPDPS 2021
[3] NVIDIA. Multi-process service. https://docs.nvidia.com/deploy/mps/index.html

34/ 42



Speedup w/o Data Prefetch

On average: Competitive performance against manual optimization

1.28x to Serial, 1.16x to Taskflow, 1.31x to GrSched

2.00-

E==]Serial

VEC

B&S

[ Taskflow

ML

E=GrSched

22 Async

|

HITS  IMG DL

Benchmark

Il KeSCo

M1

M2

Mean

35/42



Speedup w/o Data Prefetch (cont.)

Memory occupation 1GB — 10GB
Robust against varying computational demand

o5 VEC B&S ML
2l el
8 1 __.‘Z_?;g = _,’."_‘ng‘_—_‘g‘. == ____‘,__.‘-—-—_0:1’. — _-.'&58'9!8"’8"!8"&-—’*}
o . ]
NO-——T—T T T T T T T T T T T T T T T T T T 1
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
1e8 1e7 1e6
22- HITS i IMG i DL
Q  Jp—p————< 1" T—v .
o ~¢ | ]
NOT——T—T T T T T T T T T T T T T T T T T T 1
2 4 6 8 101214 4 6 8 10 12 14 16 9 11 13 15 17 19 21
o, M1 1e7 M2 1e3 Input Size 1e3
S g | | ¥ R—R—R—— Taskflow
O 47 o —a—a—s|1¢ —— 0
8 1 '_'::0'—“’—"'1""" =4 '_""' """""" —4&— GrSched
o ] ——
NO-T—T—T T T T T T T T T T T ®— Async
2 3 4 5 6 7 8 4 6 8 10 12 14 16 —x— KeSCo
Input Size 1e7 Input Size 1e7 36/ 42



Speedup w/ Data Prefetch

On average: Achieves 93% performance compared to manual optimization
5.01x to Serial, 1.32x to GrSched

Serial BE== GrSched

EZZ Async HHE KeSCo

(@)

5.35¢ )1

Speedup
1 |ﬁ3|| |ﬁ>|| M|

o

Benchmark
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Speedup in Multiple Independent Tasks

On average: 1.43x to Baseline (uncoordinated execution), 1.22x to MPS
= Priority in decreasing order

= MP-1: IMG + 2xVEC + HITS (¥20GB mem.)

= MP-2: ML + DL + B&S (¥15GB mem.)

4 - Baseline - 7
o - MPS - /
8 ] Il KeSCo - Z
2 ]
e : Z S8 =
N A . i.o‘_
0= —

ML DL B&S All
Benchmark Benchmark
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Programming Efforts

v’ Automatic dependency analysis
v’ Automatic concurrency management
v No new programming framework

Scheme LoC #Tokens D.A* CM.® NPF PL¢
Serial 86 378 X X v C++
Async 106 483 X X v C++
Taskflow 173 914 X v X C++
GrSched 366 1832 v v X Python
KeSCo 88 401 v v v C++

* Automatic Dependency Analysis

® Automatic Concurrency Management
® No New Programming Framework

4 Programming Language

39/42



Conclusion

* Engineering burden and performance gap is observed in
implementing concurrent kernel execution with existing
programming models.

* We propose KeSCo, a compiler-based scheduler

» Expose kernel-level concurrency with trivial human efforts
» Low synchronization, load balance scheduling algorithm
» Extensible to multi-process scenario

* KeSCo outperforms the SOTAs with lessened programming efforts.
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